CAPITA

New Monks Farm

Interpretative Hydrogeological Report on Groundwater Levels and Influencing Factors

For New Monks Farm Developments Ltd
April 2014

Quality Management			
Job No	CS/056361	Doc Status	For Information
Title	Interpretative Hydrogeological Report on Groundwater Levels and Influencing Factors		
Location New Monks Farm, Lancing			
Document Ref	Final Issue		
File reference	F:IZENV!IProjectsICS056361_New_Monks_FarmIB.Work_Tasks\4. ReportsIPreliminary ReportINew Monks Farm Report 09Apr2014 FINAL.docx		
Date	April 2014		
Prepared by	Martin Weil/ Lawrence Jones	Signature (for file)	
Checked by	Trevor Muten	Signature (for file)	Treenerthater
Authorised by	Neil Greenwood	Signature (for file)	sex

Executive Summary

The Site	The proposed development site, which is of approximately 28 hectares, is located off Marsh Barn Lane at New Monks Farm, Lancing, West Sussex. The site comprises part open fields and part a golf course in construction. Overall the site slopes in a north easterly direction, with ground levels ranging between 2.0 m and 5.0 m AOD. The site contains numerous watercourses.
Report objectives	To test the validity of preliminary mapping by the Environment Agency, which classifies the site as being at high risk from groundwater flooding, additional intrusive investigations and detailed water level logging in multiple geological horizons has been undertaken. The results have been compiled and assessed by experienced hydrogeologists to derive a comprehensive understanding of the hydrogeology and hydrogeological processes operating at the site (refer last box for conclusions).
Investigation carried out	The drilling work, which occurred mainly over the period 23/1/2014 to $5 / 2 / 2014$ (during which time the weather was generally very wet), included: - 10 No Cable percussion boreholes to a depth of between 10 m and 15 m bgl and dual 50 mm diameter monitoring wells (one borehole was redrilled); - 2 No falling head tests; - 20 No automatic water level data recorders were installed in ten borehole wells on the $7 / 2 / 2014$ and these were set to record water levels at 2 minute intervals. The divers were withdrawn and the data information downloaded on the $4 / 3 / 2014$, so as to allow this interim report to be produced. The loggers were then reset the same day with the aim to continue through to the week commencing 5th May 2014; and - 10 No divers were installed at ten surface water localities utilising a mix of hanging lines off culverts and bridge decks and from wooden gantry type structures. The loggers were installed at the same time as the well loggers and recorded at the same intervals. They were downloaded on the same date and re-set in the same manner as the wells.
Geology findings	The ground conditions encountered by the boreholes were in accordance with the published geology for the site with made ground over clay superficial (Alluvium or Head deposits) with chalk beneath. It is noted that granular beach deposits were absent (a porous geological units found elsewhere in the Worthing area). The clay cover is complete over the whole site. The nature of the clay superficial is divided into two types; namely

soft highly compressible alluvial silty clays and lower compressibility soft or soft firm (locally firm) slightly gravelly silty clay head deposits.

Of the superficial deposits, the clay head dominates in terms of footprint coverage and the stratum is typically 3 to 4 m thick. The alluvial clay is present as finger shaped deposit which runs in an east- west alignment in the northern fifth of the site. The clay alluvium is either of similar thickness to the clay head or in the case of a northern-central area considerable thicker (8.6m).

Groundwater findings
The site is not located within a groundwater source protection zone (ie a zone of land where groundwater resource is protected by the regulatory authorities).

The pattern of response from the water level versus time graphs for shallow and deep geological units confirms that the Head Deposits and the alluvial clays are acting as an aquiclude or aquitard; with nominal hydraulic interconnectivity between the units. This separation of water units applies both during periods when the Chalk piezometric surface (equivalent to the water pressure) in a unit is artesian, with a pressure head above the elevation of the perched water table level in the clay above; and when the piezometric surface in the Chalk is lower than this perched water table.

In a single location (central northern sub area) the chalk piezometric level rises less than a metre above the land surface.

The most southerly borehole on the site has a lower piezometric surface in the Chalk aquifer than the near surface perched water table. Moreover, the observed water level in the Chalk in this peripheral location shows a clear tidal influence, with a diurnal water level range of up to approximately 3 cm . The periodicity of the diurnal variability in Chalk groundwater head confirms a direct tidal influence and therefore hydraulic connectivity with the sea or estuarine water at this sector of the site.

Surface water findings

The closest major water feature is the River Adur located approximately 1.5 km east of Marsh Barn Lane. Surface water movements at the site are influenced by a series of ditches that eventually combine and discharge via a control structure adjacent to the south-east corner of the site boundary with Shoreham airfield which then drains into the tidal River Adur.

The hydrographs (water height in the channel versus time graphs) for all the functioning surface water stations show there is a response to rainfall, with a fairly rapid response with an increase in water level during and following rainfall, with a tail off back to a base level. The hydrographs for those monitoring points placed on the most northerly water courses show higher amplitude peaks with quite marked tails offs. This pattern is attributed to surface water runoff, in part via the A27 drainage and in part from the hills to the north of the A27.
The surface water level data also displays a longer trend with the

	surface water height data reducing over the course of the monitoring period notably from a peak level on the 14 February 2014 through the 03 March 2014. This longer term trend in declining surface water levels over this period is identifiable in all of the surface water monitoring locations across the site; although is less pronounced in the water course located in the north-eastern corner of the site. Furthermore, the surface water monitoring locations to the south and east of the study site all show evidence of diurnal fluctuation in water level related to the tidal cycle. This tidal influence on the surface water levels over much of the site is interpreted to most likely be a result of retardation where flow within the channels backs up due to the rising and high tide in the Adur estuary and sea.
Conclusions/ groundwater model	The Newhaven Chalk forms the bedrock geology to the site. The Chalk aquifer is recharged at its outcrop to the north of the A27, and is confined by superficial deposits over the entirety of the site, with semi-confinement just beyond the northern boundary of the site. Towards the southeast of the study site, there is a tidal signal in the Chalk piezometry, inferring hydraulic connectivity between the Chalk aquifer and the marine or estuarine environment. This is not identified elsewhere across the deep monitoring boreholes at the site. Furthermore, the water levels in the shallow boreholes towards the eastern boundary of the study site also display a diurnal cycle that can be attributed to tidal fluctuation influence. The superficial Head and Alluvium deposits overlay the Chalk bedrock and form an aquiclude or aquitard, substantially limiting vertical groundwater movement between the Chalk and the near surface deposits. As a result, during the period of groundwater level monitoring, the Chalk aquifer beneath the site is confined with the piezometric surface above the base of the superficial deposits. The superficial deposits act as an aquitard or aquiclude, with some evidence for low to very low vertical permeability, related to clays and silts within specific lateral continuous horizons within the Head and Alluvium deposits. This provides protection to the Chalk aquifer at depth and results in both a perched aquifer in the superficial deposits; and confinement of the Chalk aquifer. The intense and substantially above average rainfall prior to and during the field monitoring has led to elevated water table levels in the superficial deposits, forming localised groundwater mounds. The excess groundwater storage is released via flows and seepages into the surface water drainage system. During the high rainfall event, the water level within the surface water drainage was observed to be lower than the perched groundwater mounds. Therefore, there is a component of perched groundwater contribution to the base flow within the surface water drainage at the site. There is no evidence to indicate that there is direct contribution to

surface water flows from the Chalk aquifer at depth beneath the site.
It is noted that during the study period, excess groundwater storage was released from the unconfined Chalk aquifer to the north of the A27 via ephemeral springs and streams, resulting in localised groundwater flows and flooding in parts of Lancing close to the A27 in February and March 2014. The groundwater flooding event in Lancing did not lead to groundwater flooding of the study site. It may have contributed to additional flows within the surface water drainage across the site, as the excess groundwater flowed (and was also pumped) from the affected areas through the surface water drainage towards the River Adur, estuary and sea.

Overall conclusions and implications to the surface water management system.

The observations made during the very high rainfall and groundwater conditions experienced in early 2014 show that the study site is not susceptible to groundwater flooding, provided the geological units remain intact during any development.
The EA mapping of a 'high risk' of flood emergence' would appear over cautious for this site.

Relevance to surface water management

A key component of the development proposals is to mitigate against flood risk by raising ground levels to a height commensurate with the 1 in 200 year coastal flood level (to 2115) plus a 300 mm freeboard to account for varying wave heights and uncertainty. To mitigate against potential overland flows entrance thresholds to buildings will be raised a further 150 mm . The investigations have encountered a degree of baseflow (at least during wet weather periods) between the shallow superficial geology and the water courses but this is restricted by the clay geology (hence low permeability). In this setting it is not considered that the capacity of the existing channels will be compromised by baseflow. Any filling of the site will increase the capacity of the channel and act to improve flow capacities.

Recommendations
It is recommended that the planned additional monitoring of the various measuring points is continued into May when the response of the surface water and groundwater to drier weather can be seen.

Contents

1. Introduction 1
2. Background 3
Site Location and Immediate Environs 3
Site Description 3
Development Proposal 3
Previous Reports 4
3. Ground Conditions 6
Geology 6
Hydrogeology 7
Hydrology 8
4. Site Works 9
Scope of Investigations 9
Findings of Site Works: Ground Conditions 10
5. Hydrogeological Assessment 11
Groundwater Levels Analysis 11
Chalk Aquifer Groundwater Levels 13
Surface Flows 13
Water Quality 14
6. Hydrogeological Conceptual Site Model 16
Conceptual Model Framework 16
Initial Conceptual Understanding 17
Conceptual Site Model Development 18
Surface Water - Groundwater Interaction 19
Tidal Influence 20
Above long term average rainfall events 21
7. Conclusions and Recommendations 23
Conclusions 23
Recommendations 24

Figures

Figure 1 Site Location Plan (and EA monitoring wells)
Figure 2 Site Geology
Figure 3 EA Mapped Groundwater Risk Status
Figure 4 Site Investiation Layout
Figure 5 Geological Sections
Figures 6a and 6b Groundwater piezometric surface for Superficials
Figures 7a and 7b Groundwater piezometric surface for Chalk
Figures 8a to 8f Borehole hydrographs
Figure 8 g Surface water hydrographs
Figure 9 Development Proposals

Tables

Table 3.1: Description of Geology

Appendices

Appendix A Harrisons Factual Site Investigation Report Appendix B Groundwater levels (compensated logger data) Appendix C Groundwater levels (manual water dips)
Appendix D Water Quality data (laboratory certificates and in situ index testing)

1. Introduction

1.1 Capita Property and Infrastructure Ltd were commissioned by New Monks Farm Development Ltd to undertake a hydrogeological study at New Monks Farm, North Lancing focused on assessing groundwater water levels and factors which influence these, including rainfall and seasonal affects and to make an assessment of this data to interpret the risk level of groundwater flooding at the site. A mixed use development is planned for the site comprising commercial, housing and a school.
1.2 Our approach to the above was outlined in a letter to the Capita Project Manager dated $2^{\text {nd }}$ December 2013, which comprised the following tasks:

1. Preparation of a Hydrogeological Desk Study report to include:
a) Site walkover;
b) Review of published available geological and hydrogeological mapping; and
c) Review of published hydrogeological records (including borehole records).
2. Design and supervision of a ground investigation to assess relationship between groundwater and surface water levels;
3. Collection of two rounds of groundwater samples for chemical analysis (one undertaken at time of issue);
4. Installation of groundwater level dataloggers; and
5. Production of an interpretative hydrogeological report to assess seasonal impacts ${ }^{1}$ and impact of recharge from rainfall intensity on groundwater levels.
1.3 The preparation of this report, which is an interim issue, has involved the examination of information from the following sources:
6. Digital mapping supplied by Landmark Information Group, including:
a) British Geological Survey 1:10,000 Superficial and Bedrock Geology maps;
b) British Geological Survey Geological Indicators of Flooding Map;
c) British Geological Survey Groundwater Flooding Susceptibility Map; and
d) Environment Agency Historic Flood Events Record.
7. British Geological Survey Solid and Drift Geological Mapping - Sheet 318: Brighton (1:50,000)
8. British Geological Survey Memoir for Geological Sheet 318 entitled Geology of the country around Brighton and Worthing;

[^0]4. Electronic records of historical boreholes accessed using http://mapapps.bgs.ac.uk/geologyofbritain/home.html;
5. Harrison Group Environmental Ltd Factual Letter-style Report on Ground Investigation at New Monks Farm, Lancing dated February 2014;
6. Brassington, F.C. and Younger, P.L., 2010. A proposed framework for hydrogeological conceptual modelling. Water and Environment Journal Volume 24, Issue 4, pages 261-273, December 2010.
7. Shepley, M. G, Whiteman, M. I., Hulme, P. J. and Grout, M.J., 2012. Introduction: groundwater resources modelling: a case study from the UK. In: Shepley, M. G., Whiteman, M. I., Hulme, P. J. and Grout, M. W. (eds) Groundwater Resources Modelling: A Case Study from the UK. Geological Society, London, Special Publications, 364, 1-5.
8. Rushton, K. R. and Skinner, A.C., 2012. A national approach to groundwater modelling: developing a programme and establish technical standards. In: Shepley, M. G., Whiteman, M. I., Hulme, P. J. and Grout, M. W. (eds) Groundwater Resources Modelling: A Case Study from the UK. Geological Society, London, Special Publications, 364, 8-17.
9. Whiteman, M. I., Seymour, K. J., van Wonderen, J. J., Maginness, C. H., Hulme, P. J., Grout, M. W. and Farrell, R. P. 2012. Start, development, and status of the regulator-led national groundwater resources modelling programme in England and Wales. In: Shepley, M. G., Whiteman, M. I., Hulme, P. J. and Grout, M. W. (eds) Groundwater Resources Modelling: A Case Study from the UK. Geological Society, London, Special Publications, 364, 19-37.
10. Met Office Rainfall data for Shoreham Airport February 2014 to March 2014;
11. Environment Agency groundwater level monitoring data;
12. Environment Agency monthly water situation report for South East Region, Solent and South Downs, February 2014.
13. Tidal data for Shoreham Harbour; and
14. Groundwater level data Brighton and Hove Albion Training Ground.

Disclaimer

1.4 This report is for the use of New Monks Farm Developments Ltd only and should not be used by any other party unless specifically advised in writing by Capita Property and Infrastructure Ltd.

This report has been prepared by Capita Property and Infrastructure Ltd on the basis of the available information received during the assessment period. Although every reasonable effort has been made to obtain all relevant information, all potential environmental constraints or liabilities associated with the site may not necessarily have been revealed.

2. Background

Site Location and Immediate Environs

2.1 The proposed development site is located off Marsh Barn Lane at New Monks Farm, Lancing, West Sussex (approximate NGR 519575 105380). The development boundary covers approximately 28 hectares. A site plan is shown on Figure 1.
2.2 The site currently exists as undeveloped greenfield land in the west and a golf course (under construction) located on eastern portion. The A27 dual carriageway bounds the site to the north; a residential development to the west; Shoreham airport bounds the site to the east; and the Brighton and Hove Albion Football Club Training Ground (under construction) forms the southern boundary.

Site Description

2.3 A site visit was conducted by an environmental consultant on the $7^{\text {th }}$ January 2013, which confirmed the land uses described above. Site access off the A27 via the VOSA weighbridge lay-by.
2.4 Two stacked portacabins are located to the immediate west of the site entrance and a vehicle wheel wash is located approximately 50 m to the south of the entrance. A surfaced haul road extends past the site entrance following the boundary to the east and south, providing access to the Brighton and Hove Albion Football Club development on the southern boundary. A site security office managed by the football club developers is located on the haul road approximately 600 m south of the site entrance.
2.5 Numerous drainage ditches and balancing ponds are located throughout the site; Figure 2 illustrates the main surface water features.
2.6 A topographic survey was carried out by M.J Zara Associates on behalf of Michael Cox Associates in April 1999. Overall the site slopes in a north easterly direction, with the following observations noted:-
i. The area of highest elevation can be found in the south western corner where ground levels are approximately 5.0 m AOD ;
ii. Ground levels in the north western corner are 2.0 m AOD; and
iii. Ground levels in the centre of the site are typically 2-2.5m AOD.

Development Proposal

2.7 An indicative development proposal is included as Figure 9 for a mixed used development and includes the following:
iv. Residential;
v. Business and Commercial; and

vi. Primary School

Previous Reports

2.8 A summary of reports specific to groundwater flooding at New Monks Farm, Lancing are provided below.

Strategic Flood Risk Assessment - Capita Symonds Ltd January 2008-2010
2.9 Groundwater flooding is caused by the emergence of water originating from sub-surface permeable strata (Jacobs 2006). An increase groundwater level sufficient for the water table to rise above the ground surface and inundate land downstream from the outflow may result in a groundwater flood event. Groundwater floods can emerge from either point or diffuse locations; and may be via substantial flows via ephemeral springs or numerous smaller springs and seepage at the ground surface. Groundwater flooding may also occur via groundwater infiltration into sewers and drains. Groundwater flood events tend to be long in duration developing over weeks or months and prevailing for days or weeks.
2.10 Groundwater flood events have been recorded in various aquifer units (including Cretaceous Chalk, Limestones, river terrace gravels). However most accounts of groundwater flooding are confined to the Chalk outcrop, which includes the Chalk of Southern England (Jacobs 2006).
2.11 The primary control on the distribution and timing of groundwater flooding from the Chalk are:

- Spatial and temporal distribution of rainfall.
- Spatial distribution of aquifer properties.
- Recharge mechanisms, duration and spatial distribution.
- Spatial and lateral distribution of geological structures (drift deposits, stratigraphy).
- Efficiency of the surface runoff and drainage network.
2.12 Compared to other aquifer units, the Chalk can be more vulnerable to groundwater flooding because of its geological formation. Characteristically, groundwater movement and storage in the Chalk is predominantly via transmissive fractures and fissures which can result in rapid rises in groundwater levels, which may take a substantial time to recede. The propensity for groundwater flooding is higher where the Chalk is exposed with minimal drift cover. The vulnerability of an aquifer to groundwater flooding can largely be determined by an analysis of the meteorological situation and geological knowledge.
2.13 Map G of the strategic flood risk assessment - titled 'Areas Prone to Groundwater Flooding' highlights that the proposed development is located in an area classified as a 'High Potential for Groundwater Flooding' and land that borders the site to the immediate north is classified as a 'Groundwater Emergence Zone Area' and also a contains a 'Recorded Groundwater Flooding Event'.

Strategic Flood Risk Assessment - JBA Consulting January 2012

2.14 A "Core Strategy" summary sheet is provided for New Monks Farm ${ }^{2}$ which states with respect to Groundwater Flood Risk 'The site is underlain by the Newhaven Chalk Formation, and is within the EA's major aquifer high vulnerability zone. Consequently the area may be susceptible to groundwater emergence. According to the EA groundwater flood susceptibility map, the majority of the site resides in a 1 km square where the proportion of the 1 km square that is susceptible to groundwater flood emergence is more than 75%.'
2.15 And recommends that 'The site is also at risk of groundwater and surface water flooding, therefore steps should be taken to reduce the consequence of flooding. Any future development should ensure that it would not increase the surface water flood risk elsewhere, to achieve this any existing flow paths would need to be maintained. The site is greenfield so surface water drainage techniques should be built into any new design to ensure the runoff rate does not increase.'

Meeting of Capita, Planners and Environment Agency on 14 January 2014

2.16 Dr Rob Hares of Capita property and Infrastructure produced a memo to inform the meeting at the EA offices in Worthing. This provided a plan of intrusive investigation to assess the potential for groundwater flooding and this involved the following measures:
i. Strike and resting groundwater levels across the site (determined by groundwater strikes during Cable Percussion Boreholes);
ii. Assessment of permeability of Head Deposits; Alluvium and Beach Deposits;
iii. Continual measurement of groundwater water levels (using Schlumberger data loggers) within Newhaven Chalk; Gravel; and Beach Deposits; and
iv. Continual measurement of water levels within notable surface water features (using Schaumberg data loggers)
2.17 To facilitate the above it is intended to excavate ten boreholes to a maximum depth of 15 m bgl . The groundwater monitoring will be undertaken over a 3 month period and will assess changes in groundwater levels in response to rainfall intensity and tidal variance. The data will also be used to assess groundwater/surface water interactions and will be used to provide conceptualism of the site with hydrographs. This scoping/methodology was generally agreed.

[^1]
3. Ground Conditions

Geology

3.1 A review of published geological information was carried out, including information from the British Geological Survey (BGS) 'Geolndex' online database (which includes 1:50000 scale geological mapping), Lexicon and borehole information.
3.2 The site is underlain by bedrock of the Newhaven Chalk Formation, superficial deposits are found across the site comprising Head Deposits at the near surface to the west of Marsh Barn Lane, with borehole logs confirming Head Deposits underlie the whole study site; and Alluvium at the near surface above the Head Deposits, to the east of Marsh Barn Lane; with an area of Alluvium to the west of Marsh Barn Lane immediately south of the A27.
3.3 The British Geological Survey (BGS) have records of several historical boreholes on site and within the surrounding area. A summary of the published and encountered geological sequence is provided in Table 3.1 below.
3.4 The geology beneath the land to west of New Monks Farm and to east of Shadwells Road comprises of superficial Head Deposits, comprising Clay Silt Sand and Gravel. This is above a bedrock of formed by the Newhaven Chalk Formation. The Newhaven Chalk is underlain by the Seaford Chalk which forms the bedrock outcrops to the east and northeast from the site; and is overlain by the Tarrant Chalk Member of the Culver Chalk Formation which outcrops to the west and northwest from the site. The Seaford Chalk, Newhaven Chalk and Tarrant Chalk form a continuous Principal Aquifer that underlies the site; and has a recharge area to the north of the A27, along the South Downs dip and scarpe slope.
3.5 Two borehole logs are identified in the area west of New Monks Farm and east of Shadwells Road.

- TQ10NE86 Topsoil to 0.2 m over; CLAY 1.5 m over; clay gravel 0.2 m ; over CHALK 4.1 m Standing water level at 0.4 m bgl (moderate seepage at depths $>3.8 \mathrm{~m} \mathrm{bgl}$);
- TQ10SE193 Brown silty CLAY with Gravel 2.92 m over; putty chalk 1.64 m water strike approx. 3.81 m rose to approx. 2.92 m .
3.6 The land to the west of North Barn Farm and to east of Barfield Park Road is underlain by superficial Raised Beach Deposits, comprising Sand and Gravel. Beneath the Raise Beach Deposits, the bedrock comprises of the Newhaven Chalk Formation. This geology is confirmed from the following borehole logs in this area:
- TQ10SE38 Drift overlying Upper Chalk (thicknesses not given) to max depth 8.84 m ; with rest water level at 0.76 m bgl ;
- TQ10SE23/A Drift (Gravel) 3.05 m over; Chalk 15.2 m;
- TQ10SE23/B Drift (Beach deposits) 3.05 m over; Chalk 27.4 m. Water level about 3.05 m (top of the Chalk).
3.7 The geology underlying the land to the east of Marsh Barn Lane consists of superficial Alluvium deposits comprising Clay, Silts, Peat and Sands. The bedrock is Newhaven Chalk Formation. This is confirmed by the following borehole logs:
- TQ10SE192 Topsoil 0.3 m over; soft-firm silty CLAY 1.3m over; firm brown grey silty CLAY 1.0 m over; Putty Chalk 1.5 m ; water strike at top of the Chalk (3.048 m) rising to $1.5 \mathrm{~m} ;$
- TQ10NE108 Dark Clay 9 m over; Chalk 18 m; water struck at 11 m .

Table 3.1 Description of Geology

Geological Unit		Description	Thicknesses
Made Ground	Not known - in location of new Golf Course	Not known	
Quaternary	Alluvium	Clay, Silty, Peaty, Sandy. Superficial Deposits formed up to 2 million years ago in the Quaternary Period. Local environment previously dominated by rivers. TQ10SE192 soft to firm brown and grey silty CLAY and fine grey SAND with flint and putty CHALK	
	Head	TQ10N108 Dark CLAY Clay, Silt, Sand And Gravel. Superficial Deposits formed up to million years ago in the Quaternary Period. Local environment previously dominated by sub-aerial slopes TQ10NE86 soft to firm grey mottled brown silty CLAY fine gravel with soft brown CLAY at the base. Cretaceous	Newhaven Chalk Formation
TQ10SE193 Firm brown silty CLAY with gravel Chalk. Sedimentary Bedrock formed approximately 71 to 86 million years ago in the Cretaceous Period. Local environment previously dominated by warm chalk seas. TQ10NE86 describes extremely soft structureless putty chalk becoming firm structureless CHALK with lumps of intact CHALK and a few flints. (Grade V)	Base not recorded on historic borehole logs. records		

Hydrogeology

3.8 Hydrogeological information has been obtained from the Environment Agency's (EA's) website page 'What's in Your Backyard'. The bedrock geology (Newhaven Chalk Formation) is classified as a Principal Aquifer, which is described by the EA as "layers of rock or drift deposits that have high intergranular and/or fracture permeability - meaning they usually provide a high level of water storage. They may support water supply and/or river base flow on a strategic scale."
3.9 The superficial deposits (Head and Alluvium) are described by the EA as "Secondary Undifferentiated - where it has not been possible to attribute either category A or B to a rock type. In most cases, this means that the layer in question has previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the rock type."
3.10 The site is not located within a groundwater source protection zone. The groundwater vulnerability for the majority of the site is classed as Major Aquifer High. However, a section of land to the west of Marsh Barn Lane is classified as Major Aquifer Intermediate. The groundwater vulnerability maps are a "broad appraisal of where groundwater resources may be vulnerable from surface land use activities." A high classification assumes that the soils can readily transmit liquid discharges because they are either shallow or susceptible to rapid flow directly to rock, gravel or groundwater.
3.11 The Environment Agency monitors groundwater levels at a number of observation boreholes in the Lancing area. Historic water level data for five observation boreholes in the Lancing area has been reviewed as part of this study. Three of the data sets from boreholes referred to as Sussex Pad Hotel, Old Salts Farm and New Salts Farm have historic data but not continuous over recent years. However, the boreholes referred to as Sussex Pad No.1, north of the A27 close to the north-eastern corner of the study site and the surface water monitoring location SW10; and the Daniels Barn borehole, south of the A27 and north of the study site, close to BH10, has a long term water level monitoring record.

Hydrology

3.12 The closest major water feature is the River Adur located approximately 1.5 km east of Marsh Barn Lane. However, surface water which runs off the developable part of the site is collected by a series of ditches that eventually combine and discharge via a control structure adjacent to the south-east corner of the site boundary with Shoreham airfield. These ultimately discharge to the River Adur. The surface water ditches are illustrated on Figure 2.
3.13 The estuarine reach of the River Adur has been classed as good and moderate potential with respect to current chemical and ecological potential, respectively.
3.14 A freshwater spring known as Honeyman's Hole is located offsite, approximately 450 m to the east of the site entrance.

4. Site Works

Scope of Investigations

4.1 A site investigation specification and tender package was prepared by Capita in January 2014 and Harrison Environment Group Ltd were duly commissioned to undertake the drilling work. The drilling occurred mainly over the period 23/1/2014 to $5 / 2 / 2014$ during which time the weather was generally very wet. A further borehole (BH4S) was drilled after a hiatus on 19/3/2014 and on the same date the seal was rectified in 6 S and BH5 decommissioned by grouting. The objectives of the site investigation were as described in para 2.16.
4.2 The site investigation Contractor carried out the following exploratory works:

- CAT scan to screen for buried services;
- 10 No Cable percussion bored excavations to a depth of between 10 m and 15 m bgl and dual 50 mm diameter monitoring wells (designated BH 1 to BH 10)
- A re-drill designated BH4AS with a 1.5 m long 50 mm diameter monitoring well;
- 2 No falling head tests at locations specified by the Project Manager;
- The recovery of small disturbed samples and bulks samples and U100 samples for soil classification purposes;
- Grouting sections of boreholes;
- Preparation of Factual Reports (to include x, y, z co-ordinates and levels of boreholes and pits); and
- Provision of digital data in AGS and AutoCAD format.
4.3 Ten locations were proposed for exploratory boreholes. The final locations, determined from access considerations and with respect to any buried services were to be agreed on site with the Project Manager, and are shown in Figure 4. Those wells selected for water level installations were as follows: BH1S and D, BH2 S and D, BH4D, BH6D, BH7 S and D, BH10 S and D.
4.4 Capita engineers installed automatic water level data recorders (called divers) in ten borehole wells on the 7/2/2014 and these were set to record water levels at 2 minute intervals. The divers were withdrawn and the data information downloaded on the $4 / 3 / 2014$, so as to allow an interim report to be produced. The loggers were then reset the same day with the aim to continue through to the week commencing 5th May 2014. A barometric data logger was installed to record atmospheric pressure over the same data collection intervals.
4.5 Capita engineers installed automatic water level data recorders (called divers) at ten surface water localities utilising a mix of hanging lines of coverts and bridge decks and from wooden gantry type structures. The loggers were installed at the same time as the well loggers and recorded at the same intervals. They were downloaded on the same date and re-set in the same matter as the wells.
4.6 Manual dips were collected on the 5/6 of March and the 4/5 of April 2014 of all functioning loggers, both wells and surface waters.
4.7 Capita engineers collected water samples from each borehole and surface water location over the period 4 to $6 / 3 / 2014$. Low flow pump techniques (with stabilised water quality parameters using a multiparameter troll) were used to collect groundwater samples and simple jar immersion techniques were used to collect surface water samples. These were despatched in cool boxes under ice packs to I2 Laboratories.

Findings of Site Works: Ground Conditions

4.8 The ground conditions encountered by the boreholes were in accordance with the published geology for the site with made ground over clay superficial (Alluvium or Head deposits) with chalk beneath. It is noted that granular beech deposits were absent.
4.9 A summary of the geology is shown in Figure 2. This illustrates that there is cover of clay over the Chalk bedrock over the whole of the site. The nature of the clay superficial is divided into types namely soft highly compressible alluvial silty clays and lower compressibility soft or soft firm (locally firm) slightly gravelly silty Clay head deposits.
4.10 Of the superficial deposits, the clay head dominates in terms of footprint coverage and the stratum is typically 3 to 4 m thick. Where it is thinner this is because its upper layers have been replaced with made ground. The alluvial clay is present as finger shaped deposit which appear to follow the larger current water coarse which runs in an east- west alignment in the northern fifth of the site (within 200 m of the Old Shoreham Road (A27). The clay alluvium is either of similar thickness to the cay head or in the case of BH 1 considerable thicker (8.6 m).
4.11 The chalk subcrop proved difficult to sample and log its various weathering grades despite an attempt to collect 'undisturbed' U100 samples of the material. However, there often appears to be a 1.5 m thick upper unit of structureless gravelly Silt over a layer of structureless chalk cobbles and gravel.
4.12 When drilling, most boreholes made two separate water strikes, an upper one in the shallow perched water table (ie within the superficial deposits an second one within the Chalk. Both strikes had a significant head rise after 20 minutes. Refer Borehole logs in Appendix A for detail. None of the borehole strikes gave rise to water flowing out of the casing top.

5. Hydrogeological Assessment

Groundwater Levels Analysis

5.1 As detailed in Section 4, water levels within the upper superficial and Lower Chalk aquifer units have been measured using pressure transducers logging the piezometric head. This data is presented in Figures 8 a to for the period from 07 February to the 03 March 2014.
5.2 Distinct water levels are observed between water level within the upper superficial aquifer and the Lower Chalk aquifer at depth. This is noted in $\mathrm{BH} 01, \mathrm{BH} 02, \mathrm{BH} 07$ and BH 10 as presented in Figures a, b, e and f, respectively. In plan the flow directions in the units are shown in the surfer plots in Figures 6a and 6b (superficial deposits) and Figures 7a and 7b (Chalk -2 dates).
5.3 The water level in the shallow borehole BH02S (Head deposits) shows a relatively flat trend between 2.65 m AOD and 2.78 m AOD over the period 07 February to the 03 March 2014 which contrasts with the deeper piezometer at this location which is more variable. For example, for the same period the Chalk has a piezometric head greater than that of the perched water table at the start of the data period with a maximum of 3.096 m AOD ; which drops to lower than the water level in the Head from 22 February 2014, reaching a minimum water level of 2.527 m AOD. The shallow and deep water level time series confirms that the Head Deposits are acting as an aquiclude or aquitard; with nominal hydraulic interconnectivity, both during periods when the Chalk piezometry is artesian with a pressure head above the elevation of the perched water table level above; and when the piezometric surface in the Chalk is lower than this perched water table.
5.4 Borehole BH01 is positioned towards the north of the site, drilled through Alluvium deposits. The water level data in the shallow well shows a relatively flat trend between 2.82 and 2.86 m AOD; whereas the deeper Chalk piezometry commences at a higher head, approximately 9 cm above the shallow water level in mid-February, with a gradual decline to be essentially coincident with the shallow water level by early March 2014. The initial difference in the piezometric head should be considered in the context of the position of BH 01 towards the north of the site, closer to the Chalk outcrop than the other boreholes drilled through the Head Deposits at the site. The elevated piezometric surface is interpreted to be in response to the intense rainfall falling up to mid-February; and as the excess groundwater storage in the Chalk aquifer drained from the aquifer via perennial and ephemeral springs to the north of the A27, and then the pressure in the Chalk aquifer slowly diminished. As the water table in the Chalk aquifer reduced, the difference in the piezometric level in the Chalk relative to the Alluvium and Head deposits also reduced.
5.5 The difference in superficial/Chalk heads during the elevated piezometry and the lag before the two piezometric levels reached equilibrium, indicates that there is a delay in the hydraulic interconnection between the two aquifer systems. It is unclear solely from the groundwater level data whether the hydraulic interconnection occurs via a predominantly vertical pathway or via a lateral interaction due to the thinning of the Head Deposits and proximity of the Chalk outcrop to the north. This thinning may be further exacerbated by underground services and the depth and constituent make-up of the A27 base in relation to the thickness of the Head Deposits.
5.6 Borehole BH10 is located to the northeast of the site, immediately to the south of the A27 and caravan park and in a similar geological setting as BH01. The shallow piezometer BH 10 S is drilled into the Alluvium deposits, with the water level essentially flat, rising from 2.90 m AOD at the start of February to approximately 3.05 m AOD by mid-February before declining to 2.77 m AOD by the end of February 2014. This is the same situation as found in the shallow well in BH01S. It is noted that the shallow groundwater level is approximately 2.9 m above the level of the nearest water level monitoring points at SW08. This is a result of intense and prolonged rainfall-recharge to the alluvium aquifer building up groundwater levels without sufficient time for these to drain down to reach equilibrium with the level of the adjacent surface water. The drain down being slowed buy the low permeability of the alluvial clay.
5.7 This contrasts with the piezometric surface measurements in the Chalk aquifer beneath the Alluvium at this location, whereby the piezometric surface in BH10D rises steadily from approximately 2.17 m AOD on 07 February 2014 to approximately 2.63 m AOD by the beginning of March 2014. Although the Chalk piezometer rising and the Alluvium falls over the same period, there is no evidence to indicate that these converge and therefore the Chalk groundwater and the perched groundwater in the Alluvium deposits act locally as separate hydrogeological units; with layers in the Alluvium deposits retarding vertical groundwater movement sufficiently to act as an aquitard.
5.8 The most southerly borehole on the site - BH07 - has a lower piezometric surface in the deeper Chalk aquifer than the near surface perched water table. The water table in the superficial deposits over the period from 07 February to 03 March 2014 ranges from 3.67 m AOD to 4.01 m AOD, varying in response to rainfall and surface water levels. In contrast, the piezometric surface in the Chalk aquifer beneath the Alluvium in BH07D ranges from 2.233 m AOD to 2.735 m AOD. Moreover, the observed water level in the Chalk borehole BHO7D shows a clear tidal influence, with a diurnal water level range of up to approximately 3 cm . The periodicity of the diurnal variability in Chalk groundwater head confirms a direct tidal influence and therefore hydraulic connectivity with the sea or estuarine water at this sector of the site.
5.9 The water levels in the upper and lower aquifer units in BH4 shows identical values throughout the time series, strongly indicating that there is direct hydraulic connectivity between the units at this location. Investigations determined that the borehole was poorly grouted, and allowed water flow between the units via borehole BH04. This was addressed through the re-drilling of the shallow piezometer - referred to as BH04A - to a depth of 1.5 m below ground level into the Head Deposits on the 20 March 2014. The shallow borehole - BH04S - was grouted to ensure that the water level measured in BH04D was only that of the Chalk aquifer at depth. There was no water strike during the drilling BH04A. Future monitoring at BH04D and BH04AS will allow clarification of the true head differences.
5.10 The water level time series for the shallow and deep aquifers monitored at BH06 show a parallel water level between the shallow level water level and the deeper piezometric head of approximately 8 cm throughout. The near-constant difference between these two piezometric measurements indicates that there is a strong interconnectivity between the upper and lower aquifers at this location. It is understood that the bentonite plug dropped during the construction of BH06 which may explain the difference between the water levels whilst representing a fairly rapid pathway via the borehole. Other possible explanation, such an error in the water level measurement, reading error in the pressure transducer or adjustment to atmospheric pressure have been checked and shown not to be the case.

Chalk Aquifer Groundwater Levels

5.11 As described previously the Environment Agency monitors groundwater levels at two key wells in the environs of the site namely Sussex Pad No.1, north of the A27 close to the north-eastern corner of the study site and the surface water monitoring location SW10; and the Daniels Barn borehole, south of the A27 and north of the study site, close to BH10, has a long term water level monitoring record. Refer to Figure 1 for locations of these wells.
5.12 These two long term Chalk groundwater monitoring boreholes are well placed to determine the seasonal and long term range in Chalk groundwater conditions beneath the study site.
5.13 The historic water level at Sussex Pad Borehole No. 1 has a range from -0.31 m AOD to +3.43 m AOD over the period 1977 to 2013; and the Daniels Barn Borehole has a range from -1.26 m AOD to +2.12 m AOD over the period 1976 to 2010.
5.14 The higher end of these ranges compare well with those found in the Chalk during the march monitoring period. This is to be expected given that the weather followed one of the wettest period in the UK for tens of years. Capita has a data request logged with the EA for the Sussex Pad well to seek availability of levels for the same period as water level monitoring for this study. However, we would expect the similarity to be maintained.

Surface Flows

5.15 The level of the surface water monitoring was monitored at nine locations across the site, as identified in Figure 4. The time series of the surface water levels recorded using Diver pressure transducer loggers and adjusted for atmospheric pressure, are presented in Figure 8 g .
5.16 A number of similar trends can be identified from the time series for the nine surface water level monitoring points. There is a response to rainfall, with a fairly rapid response with an increase in water level during and following rainfall, with a tail off back to a base level.
5.17 The magnitude of the hydrograph peak and the duration of the tail vary between the monitoring points. There is evidence of individual rainfall events in the hydrographs, notably present in SW01 and SW02 to the north of the study area, adjacent to Marsh Barn Lane. Surface runoff, in part via the A27 drainage, from the hills to the north of the A27 can explain the short term rainfall response within these hydrographs.
5.18 The surface water level data also displays a longer trend or hydrograph. The water level within the surface water monitoring points has a trend reducing over the course of the monitoring period notably from a peak level on the 14 February 2014 through the 03 March 2014, as presented in Figure 8g. This longer term trend in declining surface water levels over this period is identifiable in all of the surface water monitoring locations across the site; although is less pronounced in SW10 on the north-eastern corner of the site.
5.19 Furthermore, the surface water monitoring locations to the south and east of the study site namely SW03, SW04, SW05, SW06, SW07, SW08 and SW10 - all show evidence of diurnal fluctuation in water level related to the tidal cycle. This is particularly pronounced at SW07 and SW10 to the south east and north east of the study area, respectively. This tidal influence on the surface water levels over much of the site is an important consideration in terms understanding the drainage. The tidal water level response may be either a result of marine or estuary water flowing back into the channels within the study area; however, it is more likely that the flow within the channels backs up due to the rising and high tide in the Adur estuary and sea, resulting in the hydraulic response at the monitoring locations.

Water Quality

5.20 Analysis of the water samples taken from the deep and shallow boreholes on 04 and 05 March 2014 and surface water monitoring locations on 05 and 06 March 2014 (monitoring locations as identified in Figure 4). A significant range of parameters were tested for comprising general inorganics, total phenols, heavy metals and metalloids, monoaromatics, total and speciated PAHs and aliphatic (C5-C35) and aromatic (C5-C35) petroleum hydrocarbons. The analytical results are provided in Appendix D.
5.21 The groundwater quality results from samples taken from the deep boreholes drilled into the Chalk aquifer are generally good. The metals are within EQS with the exception of dissolved manganese in BH07D, BH08D, BH09 and BH10D - located towards the eastern side of the study site. All the other parameters, as listed above, analysed within the samples taken from the Chalk groundwater are within EQS and DWS.
5.22 The water quality of the groundwater samples from the shallow boreholes shows a significant number of parameters are within EQS and DWS. However, notably manganese is elevated across the study site; boron is elevated above DWS and nickel above DWS and EQS in BH07S and BH08S. Dissolved sodium is found at elevated concentrations in BH06S, BH08S, BH09S and BH 10 S . Total PAH is identified in BH 08 S at $0.7 \mu \mathrm{~g} /$; although not identified in the speciated hydrocarbon analysis results for this borehole. All other parameters are within DWS and EQS limits.
5.23 The water quality analysis finds that the surface water samples are mostly within EQS and DWS, with the exception of arsenic and boron above DWS whilst within EQS in SW01; and dissolved manganese above DWS and EQS in SW10.
5.24 Sodium and chloride are elevated only in BH07D in the deeper boreholes and in BH07S, BH08S and BH09S for the shallow boreholes; and only in SW06 for the surface water samples.

6. Hydrogeological Conceptual Site Model

Conceptual Model Framework

6.1 Conceptual models provide a framework to enable interpretation of the available information to provide validate and justifiable set of simplifying assumptions to describe the groundwater system (Brassington and Younger, 2010; Whiteman et al, 2012).
6.2 A phased approach based on the data availability is regarded as best practice when developing conceptual model. This phased approach is outlined in Rushton and Skinner (2012). Such that a Phase 1 Conceptual Model is built on the scoping stage data and understanding and on the Phase 1 field data collection, collation and analysis. Subsequent Phases of conceptual model development are based on testing the Phase 1 conceptual model with further data collation and interpretation to refine the conceptual understanding.
6.3 The conceptual model of the groundwater system and potential surface water interaction sets out to define the extent of the study area and lateral and vertical subdivisions based on the geology, hydrogeology, topography and drainage.
6.4 The conceptual model includes a description of the hydrogeological conditions and flows across the site and at its boundary based on observed groundwater levels in specific horizons and geologies and surface water flows, together with an understanding of the groundwater movement, the inflows and outflows with respect to the study area.
6.5 Furthermore, the conceptual model considers a plausible range of aquifer parameters and their variability across the site and within the specific geological lithologies encountered
6.6 The Phase 1 conceptual model, as described by Rushton and Skinner (2012), considers the limitations of the data, the inherent assumptions and the applicability of the conceptual model in the context of the data analysed. The level of confidence associated with the numerical model and the a view as to whether there limitations within the Phase 1 conceptual model could lead to model refinement with further targeted data collection and interpretation. The cyclic process of conceptual model development and testing is presented by the Environment Agency (2002) as referred to in Whiteman, et al. (2012), such that the initial conceptual model is developed, then tested prior to further model development and testing.

Initial Conceptual Understanding

6.7 From the information presented in Section 3 Ground Conditions and 4 Site Investigation Findings, the generalised conceptual understanding of the site and surrounding area has a number of primary features. The Newhaven Chalk forms the bedrock beneath the site and is underlain by the Seaford Chalk which forms the bedrock outcrops to the east and northeast from the site; and overlain by the Tarrant Chalk Member of the Culver Chalk Formation which outcrops to the west and northwest from the site. The Seaford Chalk, Newhaven Chalk and Tarrant Chalk form a continuous Principal Aquifer that underlies the site; and has an recharge area to the north of the A27, along the South Downs dip and scarpe slope.
6.8 The Chalk bedrock and aquifer beneath the site is entirely overlain by superficial deposits. The superficial deposits overlying the Chalk across the site broadly divided into the Head Deposits to centre and south; and Alluvium deposits to the north possibly extending to the central- east of the site. This sub-division is however, a little meaningless as both the Head and the Alluvium provide a confinement of the Chalk aquifer across the site.
6.9 The superficial Head Deposits are also found to the north of the A27, up to between approximately 75 metres to the north of the north-eastern site boundary corner to approximately 300 metres to north of the north-western site boundary corner. Beyond the Head Deposits to the north, the Chalk is unconfined. The conceptual understanding developed in this assessment asserts that the recharge for the Chalk aquifer occurs at the unconfined Chalk to the north of the Head Deposits where there is no confinement by the superficial deposits, therefore, beyond between 75 and 300 metres north of the A27 (ie 100 m to 325 m from the site).
6.10 There is a general understanding that effective rainfall-recharge of the Chalk aquifer occurs predominantly throughout the winter, and ceases with increasing temperature, soil moisture deficit and evapo-transpiration by plants during the later spring, summer and early autumn.
6.11 The elevation of the Chalk and the effective recharge means that the groundwater table is at higher elevation above sea level in the aquifer outcrop to the north of the A27 than to the south. The regional groundwater movement is from the outcrop southwards towards the sea and eastwards towards the River Adur. At the site, the surfer plots suggest that the eastwards flow towards the River Adur is dominant. Where the Adur has hydraulic interconnectivity with the Chalk, the Adur forms a hydraulic fixed head boundary to the Chalk groundwater system. The sea forms a fixed head boundary to the south; with either direct or indirect chalk groundwaterseawater interaction. In terms of the conceptual understanding, there is a presumption of west to east groundwater flow within the Chalk beneath the site.
6.12 The site is not within published groundwater protection zones of public or private water supply abstractions; and therefore understood not to be within the catchment of such abstractions. There are major public water supply abstractions from boreholes in the Chalk to the west of the site in the Northbrook and Broadwater areas of Worthing which are not expected to have an hydraulic impact on the site. The water flow is away from these locations. Furthermore, there is abstraction for public water supply in Shoreham - however, because the Adur is understood to act as a hydraulic boundary, confirmed by the Source Protection Zones indicating their catchment is to the east of the Adur, this abstraction is understood not to affect groundwater movement in the Chalk beneath the site.
6.13 Topographically, the site is set on the coastal plain. The superficial Head and Alluvium deposits confine the Chalk aquifer. As such, the piezometric (or pressure) head within the confined Chalk aquifer is expected to be above the base of the superficial deposits. It is noted that with the site lying in a built environment that the 'high risk' of groundwater flooding classification for the site will more than likely have been predicted on the assumption that cohesive covers soils at the site were absent or could not be relied upon to provide an aquiclude.
6.14 Furthermore, whilst the Alluvium and Head deposits are variable gravelly clays, clays and silts the presence of fine sands and medium grained sands cannot be ruled out locally. Groundwater will pass through these superficial deposits via the sand matrix, along channel deposits and specific horizons. Nonetheless, both the Head Deposits and the Alluvium are shown to form an aquitard (with limited groundwater movement) or aquiclude (an effective barrier to a groundwater flow). This is likely to be more pronounced with the vertical direction than the lateral one. Therefore, the conceptual understanding asserts that a perched water table in the Alluvium and Head deposits will be found and that movement between the surface water and near surface perched groundwater and the Chalk aquifer beneath will be limited.

Conceptual Site Model Development

6.15 The data collected within this study tests the initial conceptual understanding.
6.16 Broadly, the piezometric data from the deeper boreholes confirms that the Chalk is semiconfined to the north the site and confined across the majority of the site. The Head Deposits confine the Chalk to the main body of the site; and the Alluvium deposits confine the Chalk to the northeast, north and part of the northwest of the study site.
6.17 To the southeast of the study area, the Chalk groundwater piezometry has a clear tidal signal, confirmed by water quality sampling in this area. The extent of tidal influence and interaction is discussed later in this section.
6.18 There is a distinct perched groundwater table within the Superficial Head and Alluvium deposits. The extent of the interaction with the surface water and Chalk groundwater at depth and at outcrop to the north is discussed in this section.
6.19 Furthermore, the period of study covered the period of above average monthly rainfall, a sequence of intense rainfall events and a rapid rise in groundwater levels within the Chalk which led to localised impacts of ephemeral springs and streams flowing from the Chalk on the Lancing area. These conditions were excellent in testing the conceptual understanding in terms of risks from groundwater flooding within the study site.

Surface Water - Groundwater Interaction

6.20 As discussed in Section 5, some of the observation borehole data shows evidence of interaction between the groundwater and surface water, whereas some of the other groundwater level data does not display direct correlation with longer and short term surface water data tends.
6.21 The degree to which water level in the shallow piezometers is affected by the surface water is a function of the proximity to the surface water and the elevation of the perched water table in the superficial deposits. As the site investigation and monitoring took place over a period of significantly above average monthly rainfall, the water table in the superficial deposits are interpreted to have established local mounds, with the elevation of the water table above the elevation of the nearby surface water features. Therefore, the surface water features were gaining water and not contributing significantly to the groundwater system over this period.
6.22 In contrast the monitored surface water levels appear to respond to changes in groundwater levels in the superficial Head and Alluvium deposits. This indicates that these features are gaining water from the perched groundwater in the superficial deposits.
6.23 The period over which the data was collected, was a period of above average monthly rainfall with a number of intense heavy rain storms occurring. The drainage system across the site responded to these events with elevated water levels within all the surface water level monitoring points. These levels reduced following cessation of the respective rain events, inferring a notable contribution from surface water drainage within their hydrographs.
6.24 However, there is also evidence of a notable baseflow component within these hydrographs; and a relationship between the water levels within the superficial deposits and the surface water levels. As the water levels in the superficial deposits are greater than the surface water levels, this relationship may relate to the rainfall response, such that the rainfall event adds to the groundwater storage and therefore imposes an increased driving head releasing this storage to the surface water drainage, whilst the rainfall response is also observed in the surface water system. To assess fully the degree of baseflow contribution from the perched groundwater in the superficial deposits, monitoring over a period of low or no rainfall would be required.

Tidal Influence

6.25 As discussed above, a significant number of the surface water monitoring locations have a diurnal pattern within the logger data parallel with the tidal cycle. This is particularly with respect to the surface water monitoring locations to the south and east of the study site - namely SW03, SW04, SW05, SW06, SW07, SW08 and SW10. This is notably pronounced at SW07 and SW10 to the southeast and northeast of the study area, respectively. The drainage pattern indicates that this hydraulic response is related to direct surface water interaction with the tidal estuary or marine environment; and is not considered directly or indirectly related to the groundwater hydraulics.
6.26 This is confirmed by the shallow observation boreholes which do not display a diurnal pattern attributable to the tidal cycle. Although there is evidence from some of the shallow observation borehole to indicate surface water - groundwater interaction, the responsiveness in groundwater level is insufficient to show a tidal response. This may be a result of groundwater levels in the Alluvium are observed to be higher than that of the surface water, therefore the extent of groundwater - to surface water interaction is one of aquifer drainage from the Alluvium to the drainage channels, rather than the other direction during the high water table conditions. Therefore the hydraulic response does not directly reflect changes in the surface water drainage depth.
6.27 Data from the deeper Chalk boreholes shows the piezometric surface is generally unaffected by the tidal cycle; with the one exception of BHO7D which is located on the eastern end of the southern boundary of the study site. BH07D displays a clear tidal response, indicating direct hydraulic interaction with the marine or estuarine environment. This tidal response is not observed at BH06D drilled into the Chalk beneath Head deposits towards the southwest corner of the site. In terms of hydraulics, it therefore indicates rapid groundwater movement between the sea or estuarine water and the Chalk occurs at depth in the area of BH07D. The tidal hydraulic response identified in BH07D is not mirrored in the groundwater in the Alluvium above (ie in BH07S).
6.28 Sodium and chloride are elevated only in BHO7D out of the deeper borehole monitoring set indicating confirmation of the marine or estuarine influence within the Chalk aquifer towards the southeast of the study area. The elevated sodium and chloride concentrations in BHO7S, BH 08 S and BH09S towards the eastern boundary of the study site may be indicative of the tidal influence within the surface drainage, though as described above water quality measurement in low flow conditions would be required to add evidence for this observation.
6.29 Sodium and chloride concentrations within the surface water samples from the single sampling round identified elevated chloride and sodium concentrations only in SW06 - towards the southeast corner of the site. This may be reflected the position of the tide at the time of the sampling - such that the surface water samples were taken between 11:55 and 12:17 on 5 March 2014 and between 10:30 and 14:51 on 6 March 2014; and the high tide at Shoreham-bySea was at 13:57 on 5 March and 14:59 on 6 March 2014, therefore all samples were taken during a rising tide and do not necessarily reflect the surface water quality at or immediately following high tide. The quality may also reflect the predominance of surface water flows following the intense rainfall preceding the sampling round.

Above long term average rainfall events

6.30 The period of study coincided with an extremely high rainfall sequence which included a series of intense rainfall events. The Environment Agency (2014) reported that the area experienced three consecutive months with more than double the long term average rainfall during December 2013, January and February 2014.
6.31 The monitoring data needs to be considered within the context of this period of extreme rainfall. The data shows a response to this particularly in terms of the water levels in the surface water drainage across the study site and the water levels within the shallow boreholes. The piezometric surface within the Chalk aquifer is also understood to be have been significantly affected by the elevated groundwater levels within Chalk aquifer as a whole.
6.32 The conceptual understanding of the surface water, perched groundwater and deeper Chalk piezometric head above the level base of the superficial deposits across the site has been confirmed from the observation data and developed in the context of this extreme event.
6.33 Some of these effects are shown to have a relatively short duration, such that the piezometric levels in some of the deep boreholes - notably BH02D - were greater than the water level in the superficial deposits above - BH02S - at the start of February, with a notable decline in the Chalk piezometry to less than the piezometric head above by mid to late February 2014. The rainfall sequence at the end of January and beginning of February included a series of very intense, high rainfall events; with an initial response in piezometric level which drained with gravity via ephemeral springs and streams in the Chalk outcrop to the north of the A27, reducing the driving head over February as the excess groundwater storage was release from the Chalk aquifer.
6.34 The perched aquifer within the superficial deposits also responded to this rainfall sequence through localised groundwater mounds and notably higher water table than the surrounding surface water drainage system. The conceptual model would indicate that with prolonged low rainfall, the water level within the superficial deposits would deplete further and approach the water levels associated with the surface water drainage.
6.35 The water levels within the surface water drainage system were also high in response to these rainfall events, although drained quicker than the superficial perched aquifer and the Chalk aquifer beneath. The surface water drainage levels measured during the study period were strongly affected by the rainfall response, with tidal affects less prominent, and only towards the east of the study site.
6.36 The extreme above long term average rainfall events of the winter 2013/14 has enabled a robust assessment of risk from groundwater flooding. The site was not flooded in response to the elevated groundwater levels. However, the volume of ponded water, notably to the northwest of the study area, adjacent to Marsh Barn Lane immediately to the south of the A27 is a response to the intense rainfall and demonstrates the importance of the surface drainage channels in allowing this water to drain from this area.
6.37 There may be a contribution from the raised perched groundwater in the superficial deposits in response to the extreme rainfall sequence, and the associated release from perched groundwater storage of this excess groundwater. This too will drain into the surface water drainage system and therefore also demonstrates the importance of maintaining effective drainage of the site. Nonetheless, there were no observed effects of ground surface flooding within or surrounding the study site from the superficial deposits apart from an additional contribution to the flow and level surface water drainage system as the excess storage within the localised perched groundwater drained.
6.38 The superficial deposits are generally shown not to have direct hydraulic continuity with the Chalk aquifer beneath, and therefore act as an aquiclude or aquitard. This was confirmed with the Chalk piezometric surface was observed to rise above the level of the base of superficial deposits without direct hydraulic interaction.
6.39 Therefore, the study shows that the superficial deposits provide a substantive cover to the aquifer and groundwater from the Chalk would flow into the superficial deposits and potentially result in localised groundwater flooding and exacerbated surface water drainage if this natural cover provided by the superficial deposits was breached. There are building solutions available to stop such a breach occurring (e.g. use of raft foundations) but the detailed solutions are not part of this report.

7. Conclusions and Recommendations

Conclusions

7.1 This hydrogeological study has established an understanding of the groundwater hydraulics and interactions associated with the study site at New Monks Farm, North Lancing.
7.2 From the desk and field study, a conceptual model of the groundwater system associated with the study site has been developed and refined.
7.3 Furthermore, the period of the site investigation and monitoring coincided with the end of a period of three consecutive months with more than double the long term average rainfall; with localised surface and groundwater flooding occurring within the area and region (but not at the site). The data and observations made during this period have enabled a robust assessment of the risk of groundwater flooding from high water table levels at the site.
7.4 The Newhaven Chalk forms the bedrock geology to the site. The Chalk aquifer is recharged at its outcrop to the north of the A27, and is confined by superficial deposits over the entirety of the site, with semi-confinement just beyond the northern boundary of the site.
7.5 Towards the southeast of the study site, there is a tidal signal in the Chalk piezometry, inferring hydraulic connectivity between the Chalk aquifer and the marine or estuarine environment. This is not identified elsewhere across the deep monitoring borehole at the site.
7.6 However, the water levels in the shallow boreholes towards the eastern boundary of the study site also display a diurnal cycle that can be attributed to tidal fluctuation influence.
7.7 The superficial Head and Alluvium deposits overly the Chalk bedrock and form an aquiclude or aquitard, substantially limiting vertical groundwater movement between the Chalk and the near surface deposits. As a result, during the period of groundwater level monitoring, the Chalk aquifer beneath the site is confined with the piezometric surface above the base of the superficial deposits.
7.8 The superficial deposits act as an aquitard or aquiclude, with some evidence for low to very low vertical permeability, related to clays and silts within specific lateral continuous horizons within the Head and Alluvium deposits. This provides protection to the Chalk aquifer at depth and results in both a perched aquifer in the superficial deposits; and confinement of the Chalk aquifer.
7.9 The intense and substantially above average rainfall prior to and during the field monitoring has led to elevated water table levels in the superficial deposits, forming localised groundwater mounds. The excess groundwater storage is released via flows and seepages into the surface water drainage system. During the high rainfall event, the water level within the surface water drainage was observed to be lower than the perched groundwater mounds. Therefore, there is a component of perched groundwater contribution to the base flow .within the surface water drainage at the site.
7.10 There is no evidence to indicate that there is direct contribution to surface water flows from the Chalk aquifer at depth beneath the site.
7.11 It is noted that during the study period, excess groundwater storage was released from the unconfined Chalk aquifer to the north of the A27 via ephemeral springs and streams, resulting on localised groundwater flows and flooding in parts of the Lancing close to the A27 in February and March 2014. The groundwater flooding event in Lancing did not lead to groundwater flooding of the study site; although it may have contributed to additional flows within the surface water drainage across the site as the excess groundwater flowed (and was also pumped) from the affected areas, through the surface water drainage towards the River Adur, estuary and sea.
7.12 The observations made during the very high rainfall and groundwater conditions experienced in early 2014 show that the study site is not directly susceptible to groundwater flooding.
7.13 However, this is on the proviso that the surface drainage system is maintained to ensure its capacity to drain the site in terms of rainfall-runoff; tidal increase and movement; perched groundwater storage release and additional flows through the site from ephemeral groundwater springs and streams, including drainage from groundwater flooding events in the sites near environs.
7.14 Furthermore, this is on the second proviso that the superficial deposits maintain the confinement of the Chalk aquifer and are not breached. This is because groundwater monitoring during the study period indicates that the piezometric surface within the Chalk can be above the base of the superficial deposits, and a breach of these superficial deposits could result in a groundwater flow into the near surface perched aquifer, increased flow into the surface drainage system and the potential for localised ponding or flooding of the land surface.
7.15 During low groundwater conditions, such breaches if allowed to occur, may also lead to drainage of the perched water table into the Chalk aquifer beneath. This may have implication in terms of groundwater quality, particularly with respect to the elevated concentrations of parameters identified within the shallow boreholes and surface water drainage during the monitoring period which may enter the Chalk aquifer beneath.
7.16 The baseline water quality of the site has been established and may be of use to monitor future construction affects.

Recommendations

7.17 The field monitoring and associated desk study interpretation is based on a limited period during early 2014. Principally, this period included intense and prolonged above long term average rainfall and episode of groundwater flooding in the Lancing area to the north of the site. To fully evaluate the impact of groundwater on the baseflow within the surface drainage system, to further understanding the extent of vertical interconnectivity during periods of low water table and the tidal influence, there is value to continuing the monitoring to include a period of low rainfall and low groundwater levels. However, we consider that this will only refine the hydrogeology model rather than substantially change it.
7.18 It will be helpful to obtain further water level information from the EA historically monitored Sussex Pad well in order to have coincident information between that well and the site wells.
7.19 Any construction at this site should fully consider and have measures in place to avoid breaching the confinement of the Chalk by the overlying Head and Alluvium deposits. Building solutions to achieve this are available.

Figures

Figure 1 Site Location Plan (and EA monitoring wells)
Figure 2 Site Geology
Figure 3 EA Mapped Groundwater Risk Status
Figure 4 Site Investiation Layout
Figure 5 Geological Sections
Figures 6a and 6b Groundwater piezometric surface for Superficials
Figures 7a and 7b Groundwater piezometric surface for Chalk
Figures 8a to $8 f$ Borehole hydrographs
Figure 8 g Surface water hydrographs
Figure 9 Development Proposals

Figure 1 Site Location

CAPITA

Property and infrastructure

Capita House, Wood Street, East Grinstead, West Sussex, RH19 1UU T 01342327161 F 01342315927 www.capita.co.uk Capita Property and infrastructure Ltd.
DRAWING NUMBER

BASED ON ORDNANCE SURVEY MAPPING AND REPRODUCED BY CAPITA SYMONDS LTD LICENCE NO. 100048730 WITH THE PERMISSION OF THE CONTROLLER OF HER MAJESTY'S STATIONERY OFFICE CROWN COPYRIGHT

Figure 2
Geological Map

DRAWN BY	CHECKED BY	PASSED BY	DATE	SCALE @ A4	ISSUING OFFICE
ST	NG	NG	$22 / 01 / 2014$	$1: 6,000$	E.Grinstead

CAPITA

Property and infrastructure

Capita House, Wood Street, East Grinstead, West Sussex, RH19 1UU T 01342327161 F 01342315927 www.capita.co.uk Capita Propery and infrastructure Ltd.
DRAWING NUMBER

NEW MONKS FARM

Figure 3
Susceptibility to groundwater flood risk

DRAWN BY	CHECKED BY	PASSED BY	DATE	SCALE @ A4	ISSUING OFFICE
ST	NG	NG	$22 / 01 / 2014$	$1: 6,000$	E.Grinstead

CAPITA

Property and infrastructure

Capita House, Wood Street, East Grinstead, West Sussex, RH19 1UU T 01342327161 F 01342315927 www.capita.co.uk
Capita Propery and infrastructure Ltd.
DRAWING NUMBER

NEW MONKS FARM

Figure 4
Lancing Site Investigation

DRAWN BY	CHECKED BY	PASSED BY	DATE	SCALE @ A4	ISSUING OFFICE
ST	NG	NG	$12 / 03 / 2014$	$1: 6,000$	E.Grinstead

CAPITA

Property and infrastructure

Capita House, Wood Street, East Grinstead, West Sussex, RH19 1UU T 01342327161 F 01342315927 www.capita.co.uk Capita Propery and infrastructure Ltd.
DRAWING NUMBER

GEOLOGICAL SECTION LICATIDN PLAN

SECTIDN C-C

NEW MONKS FARM						New Monks Farm Development	
Figure 5: GEOLOGICAL SECTIONS						CAPITA	
DRAWN BY LJ	CHECKED BY	Passeb BY NG	\| DATE ${ }_{\text {MAR }} 14$	SCALES © A S SLEE NTS	$\left\lvert\, \begin{array}{r}\text { ISSUE STATus } \\ \text { Final }\end{array}\right.$	DRAWMNG NUMEER CS056361-FIG 5	$\stackrel{\text { ReV. }}{\text { Re }}$

We | Listen Create Deliver

We | Listen Create Deliver

CAPITA

We | Listen Create Deliver

We | Listen Create Deliver

CAPITA

CAPITA

Appendix A

Harrison's Site Report

SERVICES

Units 1 \& 2 Alston Road
Hellesdon Park Industrial Estate Norwich NR6 5DS
Tel: +44 (0) 1603416333
Fax +44 (0) 1603416443

Client: Harrison Group Environmental
 Poplar Business Park
 10 Preston Road
 London
 E14 9RL

For the attention of: John Keay
Date of Issue: 10/03/2014
Page Number 1 of 7

TEST REPORT TRANSMITTAL

Report Form FMR3000 Rev.C Revision Date 26/11/08

Project	Hydrogeological Ground Investigation, New Monks Farm, West Sussex	Samples Received	10/02/2014
Report No	GL18017	Instruction received	10/02/2014
Your Ref	GL18017	Testing commenced	14/02/2014
SUMMARY OF RESULTS ATTACHED			
Test Method and Description		Quantity	UKAS Accredited
BS1377: Pa BS1377: Pa BS1377: Pa BS1377: Pa Non Standa	90:3.2 Moisture Content 90:4.4/5.0 Liquid \& Plastic Limits - Single Point Method 90:7.3 Bulk Density - Immersion Method 90:3.0 One Dimensional Consolidation ear Strength by Hand Vane	$\begin{gathered} 15 \\ 5 \\ 1 \\ 2 \\ 2 \\ 5 \end{gathered}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { No } \\ & \text { Yes } \\ & \text { No } \end{aligned}$

Remarks:

Issued by: M Willson

Approved Signatories:
M Willson (Laboratory Manager), G Bream (Senior Laboratory Technician)
Unless we are notified to the contrary, samples will be disposed after a period of one month from this date
This report should not be reproduced except in full without the written approval of the laboratory
Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation

PROJECT NAME: PROJECT NUMBER:
CLIENT:
DATE OF ISSUE:

Hydrogeological Ground Investigation, New Monks Farm, West Sussex
GL18017
Capita Property and Infrastructure
10/03/2014

SUMMARY OF MOISTURE CONTENT, LIQUID LIMIT (ONE POINT CONE PENETROMETER METHOD), PLASTIC LIMIT AND PLASTICITY INDEX TO BS1377 : PART 2 : 1990

$\begin{gathered} \hline \mathrm{BH} / \mathrm{TP} \\ \mathrm{No} \end{gathered}$	Depth (m)	Sample No.	Moisture Content (\%)	Liquid Limit (\%)	Plastic Limit (\%)	Plasticity Index	NHBC Modified Plasticity Index	Passing 0.425 mm (\%)	Soil Class	Sample Description
BH1	1.00	D1	49							Grey brown CLAY
BH1	2.00	D2	77							Grey and brown CLAY
BH1	4.00	U2	71	84	30	55	55	100	CV	Grey and dark grey CLAY
BH1	7.00	D6	56							Grey CLAY
BH2	1.00	B1	29	50	17	33	33	99	Cl	Brown and orange brown slightly gravelly CLAY. Gravel is of chalk
BH3	1.00	B1	23							Brown CLAY
BH3	2.00	D2	17							Light brown and cream silty CLAY with pockets of structureless chalk
BH3	3.00	D3	21							Light grey brown and grey slightly gravelly silty CLAY. Gravel is of flint

BS1377 : Part 2 : Clause 3.2 : 1990 Determination of Moisture Content
BS1377 : Part 2 : Clause 4.4 : 1990 Determination of Liquid Limit (Single Point Cone Penetrometer Method)
BS1377 : Part 2 : Clause 5:1990 Determination of Plastic Limit and Plasticity Index
NHBC Standards Chapter 4.2 : Determination of the modified plasticity index
REMARKS (Including any abnormalities or departures from procedure)
Determination of modified plasticity index is not covered by UKAS accreditation

Harrison Geotechnical Engineering

Units 1 \& 2 Alston Road
Norwich
Norfolk
NR6 5DS
Tel: +44 (0)1603 416333
Fax: +44 (0)1603 416443
email: laboratory@harrisongroupuk.com

PROJECT NAME:	Hydrogeological Ground Investigation, New Monks Farm, West Sussex
PROJECT NUMBER:	GL18017
CLIENT:	Capita Property and Infrastructure
DATE OF ISSUE:	$10 / 03 / 2014$

DETERMINATION OF BULK \& DRY DENSITY (IMMERSION METHOD) TO BS1377 : PART 2 : 1990 : CLAUSE 7.3

BH/TP No.	Sample Depth (m)	Sample No. Moisture Content (\%)	Bulk Density $\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	Dry Density $\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	Sample Description	

REMARKS (Including any abnormalities or departures from procedure)
Insufficient intact sample to test in full accordance with BS1377

Harrison Geotechnical Engineering

Units 1 \& 2
Norwich
Norfolk
NR6 5DS
Tel: +44 (0)1603 416333
Fax: +44 (0)1603 416443
email: laboratory@harrisongroupuk.com

PROJECT NAME:	Hydrogeological Ground Investigation, New Monks Farm, West Sussex	BH/TP No.:	BH6
PROJECT NUMBER:	GL18017	Depth (m):	1.50
CLIENT:	Capita Property and Infrastructure	Sample No.:	
DATE OF ISSUE:	$10 / 03 / 2014$		

DETERMINATION OF ONE DIMENSIONAL CONSOLIDATION PROPERTIES TO BS1377 : PART 5 : 1990 : CLAUSE 3

Description:	Brown slightly gravelly CLAY. Gravel is of fine chalk
Preparation:	\quad Undisturbed
Orientation:\quad Vertical	
Depth of sample within original sample (m):	

Initial Conditions:

Moisture Content
Voids Ratio
Diameter
Height
Bulk Density
Dry Density

30 \% 0.824 74.91 mm 19.99 mm $1.94 \mathrm{Mg} / \mathrm{m}^{3}$
$1.49 \mathrm{Mg} / \mathrm{m}^{3}$

Final Conditions
Moisture Content 27 \% Voids Ratio

Degree of Saturation
Particle Density
Laboratory Temperature
0.6974

100 \%
$2.72 \mathrm{Mg} / \mathrm{m}^{3} \quad$ (Assumed)
$18^{\circ} \mathrm{C}$

Pressure Range kPa	Time Fitting Method	$\mathrm{Mv}\left(\mathrm{m}^{2} / \mathrm{MN}\right)$	Voids Ratio	Cv M ${ }^{2} /$ year
30	t 90	1.074	0.7651	0.902
60	t 90	0.586	0.7340	0.565
120	t 90	0.386	0.6939	1.249
60	t 90	0.034	0.6974	\sim

Log of Pressure (kPa)

REMARKS:

Harrison Geotechnical Engineering

Units 1 \& 2 Alston Road
Norwich
Norfolk
NR6 5DS
Tel: +44 (0) 1603416333
Fax: +44 (0) 1603416443
email: laboratory@harrisongroupuk.com

PROJECT NAME:	Hydrogeological Ground Investigation, New Monks Farm, West Sussex	BH/TP No.:	BH1
PROJECT NUMBER:	GL18017	Depth (m):	4.00
CLIENT:	Capita Property and Infrastructure	Sample No.:	
DATE OF ISSUE:	$10 / 03 / 2014$		

DETERMINATION OF ONE DIMENSIONAL CONSOLIDATION PROPERTIES TO BS1377 : PART 5 : 1990 : CLAUSE 3

Description:	Grey and dark grey CLAY	
Preparation:	\quad Undisturbed	
Orientation:	Vertical	
Depth of sample	within original sample $(\mathrm{m}):$	4.20

Initial Conditions:

Moisture Content
Voids Ratio
Diameter
Height
Bulk Density
Dry Density

69 \%
1.829
74.79 mm
20.13 mm
$1.58 \mathrm{Mg} / \mathrm{m}^{3}$ $0.94 \mathrm{Mg} / \mathrm{m}^{3}$

Final Conditions
Moisture Content 46 \%
Voids Ratio
1.1372

Degree of Saturation 100 \%
Particle Density $\quad 2.65 \mathrm{Mg} / \mathrm{m}^{3} \quad$ (Assumed)
Laboratory Temperature $\quad 18{ }^{\circ} \mathrm{C}$

Pressure Range kPa	Time Fitting Method	$\mathrm{Mv}\left(\mathrm{m}^{2} / \mathrm{MN}\right)$	Voids Ratio	Cv M ${ }^{2} /$ year
50	t 90	2.772	1.4368	0.208
100	t 90	1.403	1.2659	0.173
200	t 90	0.737	1.0990	0.151
75	t 90	0.146	1.1372	\sim

Log of Pressure (kPa)

REMARKS:
Harrison Geotechnical Engineering
Units 1 \& 2 Alston Road
Norwich
Norfolk
NR6 5DS
Tel: +44 (0) 1603416333
Fax: +44 (0)1603 416443
email: laboratory@harrisongroupuk.com

PROJECT NAME:
PROJECT NUMBER:
CLIENT:
DATE OF ISSUE:

Hydrogeological Ground Investigation, New Monks Farm, West Sussex GL18017
Capita Property Infrastructure
10/03/2014

DETERMINATION OF SHEAR STRENGTH BY HAND VANE

BH/TP No.	Sample Depth (m)	Sample No.	Sample Description	Shear Strength (kPa)
BH1	4.00	U2	Very low strength grey and dark grey CLAY	6
BH6	1.50	U1	Low strength brown slightly gravelly CLAY. Gravel is of fine flint	28
BH7	4.45	U2	Very low strength brown slightly gravelly slightly sandy silty CLAY. Gravel is of chalk	12
BH10	1.50	U1	High strength grey brown, greenish brown and orange brown slightly gravelly CLAY. Gravel is of chalk	86
BH10	5.00	U2	TOP OF TUBE: Low strength light brown and dark grey slightly gravelly CLAY. Gravel is of chalk. BASE OF TUBE: White structureless CHALK composed of slightly sandy silty GRAVEL. Gravel is of very weak low density chalk. Hand vane determination carried out in top of sample	25

REMARKS (Including any abnormalities or departures from procedure)

Harrison Geotechnical Engineering

Units 1 \& 2
Norwich
Norfolk
NR6 5DS
Tel: +44 (0) 1603416333
Fax: +44 (0)1603 416443
email: laboratory@harrisongroupuk.com

harrisongroup	U100 Photograph Sheet	
	Job No: GL18017	
Client: Capita Property and Infrastructure	Project: Hydrogeological Ground Investigation, New Monks Farm, West Sussex	
Borehole No: BH6 Sample No.: U5	Sample Depth (m): 9.00	Date Logged: 14/2/14
Sample diameter (mm): 103.11	Sample length (mm): 385	Sample mass (g): 6284.2
Description: Structureless CHALK composed of white and light grey gravelly sandy SILT. Gravel is of fine to coarse angular to subangular very weak to moderately weak low to high density white chalk. Grade Dm. Coarse elongated flint at 9.08 m		
Photograph:		
Sample disturbance:		
Details of sub samples: (type, depth etc) None	Remarks:	
	Logged by: MW	Checked By: MW

Appendix B

Groundwater Levels (Compensated Logger Data)

CAPITA

CAPITA

CAPITA

Appendix C

Groundwater Levels (Manual Dip Measurements)

CAPITA

Groundwater level Dips 05/06 February 2014							
Location	AOD of casing	Date	Time	Water Level		Base	
				Dip (m)	m AOD	Dip (m)	m AOD
BH01S	2.801	05/02/2014	09:53	0.770	2.031	5.100	-2.299
BH01D	2.801	05/02/2014	09:53	0.280	2.521	12.550	-9.749
BHO2S	3.854	06/02/2014	10:12	1.190	2.664	2.980	0.874
BH02D	3.854	06/02/2014	10:12	1.130	2.724	7.450	-3.596
BH03S	4.728	06/02/2014	10:17	1.830	2.898	2.080	2.648
BH03D	4.728	06/02/2014	10:17	1.830	2.898	11.980	-7.252
BH04S	3.864	06/02/2014	10:03	n / r		3.300	0.564
BH04D	3.864	06/02/2014	10:03	n / r		9.550	-5.686
BH05S	2.981	06/02/2014	10:30	0.440	2.541	2.670	0.311
BH05D	2.981	06/02/2014	10:30	0.440	2.541	6.400	-3.419
BH06S	4.31	06/02/2014	10:23	0.960	3.350	3.050	1.260
BH06D	4.31	06/02/2014	10:23	1.040	3.270	9.940	-5.630
BH07S	5.185	06/02/2014	10:38	1.480	3.705	3.260	1.925
BH07D	5.185	06/02/2014	10:38	11.550	-6.365	2.720	2.465
BH08S	3.919	06/02/2014	10:51	0.500	3.419	2.400	1.519
BH08D	3.919	06/02/2014	10:51	0.940	2.979	9.770	-5.851
BH09S	4.353	06/02/2014	11:21	0.610	3.743	2.620	1.733
BH09D	4.353	06/02/2014	11:21	1.050	3.303	0.476	3.877
BH10S	3.262	05/02/2014	09:46	0.300	2.962	2.700	0.562
BH10D	3.262	05/02/2014	09:46	1.170	2.092	8.270	-5.008

Groundwater Level Dips 04/05 march 2014								
Location	AOD of casing	Date	Time	Water Level		Base		Comments
				Dip (m)	m AOD	Dip (m)	m AOD	
BH01S	2.801	04/03/2014	12:30	0.000	2.801	nr		Deep well under artesian conditions and overflowing, shallow well level is uncertain.
BH01D	2.801	04/03/2014	12:30	0.000	2.801	nr		
BH02S	3.854	04/03/2014	14:15	1.235	2.619	2.950	0.904	
BH02D	3.854	04/03/2014	14:16	1.310	2.544	7.300	-3.446	
BH03S	4.728	04/03/2014	15:23	1.930	2.798	2.300	2.428	
BH03D	4.728	04/03/2014	15:27	1.940	2.788	11.700	-6.972	
BH04S	3.864	04/03/2014	13:24	1.180	2.684	3.300	0.564	
BH04D	3.864	04/03/2014	13:24	1.190	2.674	9.500	-5.636	
BH05S	2.981	05/03/2014	15:54	0.435	2.546	2.400	0.581	BH05S and BH05D connected.
BH05D	2.981	05/03/2014	15:54	0.430	2.551	5.500	-2.519	
BH06S	4.31	05/03/2014	14:39	1.095	3.215	3.050	1.260	
BH06D	4.31	05/03/2014	14:41	1.245	3.065	9.920	-5.610	
BH07S	5.185	05/03/2014	12:26	1.560	3.625	3.250	1.935	
BH07D	5.185	05/03/2014	12:27	2.990	2.195	11.400	-6.215	
BH08S	3.919	05/03/2014	10:56	0.605	3.314	2.300	1.619	
BH08D	3.919	05/03/2014	10:58	1.370	2.549	9.800	-5.881	
BH09S	4.353	05/03/2014	09:48	0.665	3.688	2.600	1.753	
BH09D	4.353	05/03/2014	09:50	1.560	2.793	11.200	-6.847	
BH10S	3.262	04/03/2014	10:30	0.530	2.732	2.560	0.702	
BH10D	3.262	04/03/2014	10:30	0.670	2.592	8.010	-4.748	

CAPITA

Groundwater Level Dips 06 March 2014								
Location	AOD of casing	Date	Time	Water Level		Base		Comments
				Dip (m)	m AOD	Dip (m)	m AOD	
BH01S	2.801	06/03/2014	09:50	0.000	2.801			Deep well under artesian conditions and overflowing, shallow wel level is uncertain.
BH01D	2.801	06/03/2014	09:48	0.000	2.801			
BH02S	3.854	06/03/2014	11:26	1.520	2.334			
BH02D	3.854	06/03/2014	11:25	1.524	2.330			
BH03S	4.728							
BH03D	4.728							
BH04S	3.864	06/03/2014	11:08	1.290	2.574			
BH04D	3.864	06/03/2014	11:10	1.295	2.569			
BH05S	2.981							
BH05D	2.981							
BH06S	4.31	06/03/2014	11:39	1.180	3.130			
BH06D	4.31	06/03/2014	11:42	1.320	2.990			
BH07S	5.185	06/03/2014	12:04	1.580	3.605			
BH07D	5.185	06/03/2014	11:53	3.080	2.105			
BH08S	3.919							
BH08D	3.919							
BH09S	4.353							
BH09D	4.353							
BH10S	3.262	06/03/2014	09:34	0.560	2.702			
BH10D	3.262	06/03/2014	09:40	0.450	2.812			

Appendix D

Water Quality Data (Lab certification and in-situ index testing)

Environmental Science

Martin Weil

Capita Property and Infrastructure Ltd
Capita House
Wood Street
East Grinstead
West Sussex
RH19 1UU
t: 01342327161
f: 01342315927
e: martin.weil@capita.co.uk
t: 01923225404
i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS
f: 01923237404
e: reception@i2analytical.com

Analytical Report Number : 14-51791

Project / Site name:	New Monks Farm	Samples received on:	10/03/2014
Your job number:		Samples instructed on:	$10 / 03 / 2014$
Your order number:		Analysis completed by:	$19 / 03 / 2014$
Report Issue Number:	1	Report issued on:	$19 / 03 / 2014$
Samples Analysed:	29 water samples		

Signed:

Dr Claire Stone
Quality Manager
For \& on behalf of i2 Analytical Ltd.

Signed:

Thurstan Plummer
Organics Technical Manager
For \& on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

soils	-4 weeks from reporting
leachates	-2 weeks from reporting
waters	-2 weeks from reporting
asbestos	-6 months from reporting

Environmental Science

Analytical Report Number: 14-51791
Project / Site name: New Monks Farm

Lab Sample Number				321787	321788	321789	321790	321791	321792
Sample Reference				BH10D	BH10S	BH01D	BH04S	BH04D	BH02S
Sample Number				None Supplied					
Depth (m)				0.67	0.55	0.00	1.18	1.19	1.235
Date Sampled				04/03/2014	05/03/2014	04/03/2014	04/03/2014	04/03/2014	04/03/2014
Time Taken				1115	1415	1230	1330	1340	1430
Analytical Parameter (Water Analysis)	¢	行							

pH	pH Units	N/A	ISO 17025	7.9	7.5	7.6	7.5	7.4	7.5
Total Cyanide	$\mu \mathrm{g} / \mathrm{l}$	10	ISO 17025	< 10	< 10	< 10	< 10	< 10	< 10
Sulphate as SO_{4}	ug/l	45	ISO 17025	26600	162000	24900	17900	45900	37700
Chloride	mg/l	0.15	ISO 17025	45	240	85	48	51	69
Ammonium as NH_{4}	$\mu \mathrm{g} / \mathrm{l}$	15	ISO 17025	< 15	< 15	< 15	< 15	< 15	< 15
Alkalinity	mg/l	3	ISO 17025	120	220	120	200	150	140

Total Phenols (monohydric)	$\mu \mathrm{g} / \mathrm{l}$	10	ISO 17025	<10	<10	<10	<10	<10	< 10

Naphthalene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01
Acenaphthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01
Benzo(a)anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(b)fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Benzo(k)fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	<0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01
Indeno(1,2,3-cd)pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	<0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01
Benzo(ghi)perylene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Total EPA-16 PAHs	$\mu \mathrm{g} / \mathrm{l}$	0.2	ISO 17025	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20

Arsenic (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	4.6	9.4	6.4	10	7.0	6.5
Boron (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	10	ISO 17025	37	220	46	72	35	42
Cadmium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.08	ISO 17025	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Chromium (hexavalent)	$\mu \mathrm{g} / \mathrm{l}$	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chromium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.4	ISO 17025	<0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Copper (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.7	ISO 17025	< 0.7	< 0.7	0.9	0.8	< 0.7	< 0.7
Lead (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	4.1	3.1	2.9	< 1.0	3.9	1.9
Manganese (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.06	ISO 17025	390	2700	9.1	180	6.9	70
Mercury (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.5	ISO 17025	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Nickel (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.3	ISO 17025	20	16	< 0.3	1.5	0.8	1.4
Selenium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	4	ISO 17025	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Zinc (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.4	ISO 17025	69	5.3	3.2	1.8	2.6	2.5

Calcium (dissolved)	mg / l	0.012	ISO 17025	100	130	110	110	140	100
Magnesium (dissolved)	mg / l	0.005	ISO 17025	5.5	23	7.9	9.9	8.2	7.4
Sodium (dissolved)	mg / l	0.01	ISO 17025	31	210	58	32	22	57

Environmental Science

Analytical Report Number: 14-51791
Project / Site name: New Monks Farm

Lab Sample Number				321787	321788	321789	321790	321791	321792
Sample Reference				BH10D	BH10S	BH01D	BH04S	BH04D	BH02S
Sample Number				None Supplied					
Depth (m)				0.67	0.55	0.00	1.18	1.19	1.235
Date Sampled				04/03/2014	05/03/2014	04/03/2014	04/03/2014	04/03/2014	04/03/2014
Time Taken				1115	1415	1230	1330	1340	1430
Analytical Parameter (Water Analysis)	C								

Monoaromatics									
Benzene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0
Ethylbenzene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	<1.0	<1.0	<1.0	< 1.0	<1.0
p \& m-xylene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0
MTBE (Methyl Tertiary Butyl Ether)	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic > ${ }^{\text {C } 5-\mathrm{C} 6}$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic > $\mathrm{C} 6-\mathrm{C} 8$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	<10	< 10	<10	<10
TPH-CWG - Aliphatic > $\mathrm{C} 8-\mathrm{C} 10$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	<10	< 10
TPH-CWG - Aliphatic > $\mathrm{C} 10-\mathrm{C} 12$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	<10	< 10	<10	< 10
TPH-CWG - Aliphatic > $\mathrm{C} 12-\mathrm{C} 16$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	<10	< 10
TPH-CWG - Aliphatic > $\mathrm{C} 16-\mathrm{C} 21$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	<10	<10	<10	<10
TPH-CWG - Aliphatic >C21-C35	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	< 10	<10	<10
TPH-CWG - Aliphatic (C5 - C35)	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10

TPH-CWG - Aromatic >C5-C7	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	<10	< 10
TPH-CWG - Aromatic >C7-C8	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	< 10	< 10	< 10	<10
TPH-CWG - Aromatic > C8-C10	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	< 10	<10
TPH-CWG - Aromatic > $\mathrm{C} 10-\mathrm{C} 12$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	<10	<10
TPH-CWG - Aromatic > C12-C16	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	< 10	< 10	<10	< 10
TPH-CWG - Aromatic > C16-C21	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	<10	<10
TPH-CWG - Aromatic >C21-C35	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	< 10	<10
TPH-CWG - Aromatic (C5 - C35)	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	< 10	<10	<10	<10

Environmental Science

Analytical Report Number: 14-51791
Project / Site name: New Monks Farm

Lab Sample Number				321793	321794	321795	321796	321797	321798
Sample Reference				BH02D	BH03D	BH09S	BH09D	BH08S	BH08D
Sample Number				None Supplied					
Depth (m)				1.31	1.94	0.665	1.56	0.605	1.37
Date Sampled				04/03/2014	04/03/2014	05/03/2014	05/03/2014	05/03/2014	05/03/2014
Time Taken				1440	1600	1045	1030	1140	1120
Analytical Parameter (Water Analysis)	c								

pH	pH Units	N/A	ISO 17025	7.5	7.5	7.4	7.6	7.3	7.6
Total Cyanide	$\mu \mathrm{g} / \mathrm{l}$	10	ISO 17025	< 10	< 10	< 10	< 10	< 10	< 10
Sulphate as SO	ug/l	45	ISO 17025	40000	80000	567000	92500	1100000	41300
Chloride	mg / l	0.15	ISO 17025	83	190	250	180	750	140
Ammonium as NH_{4}	$\mu \mathrm{g} / \mathrm{l}$	15	ISO 17025	< 15	< 15	1100	< 15	8700	< 15
Alkalinity	mg/l	3	ISO 17025	140	130	220	130	230	120

Total Phenols (monohydric)	$\mu \mathrm{g} / \mathrm{l}$	10	ISO 17025	<10	<10	<10	<10	<10	< 10

Naphthalene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	0.69	< 0.01
Acenaphthylene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01
Fluorene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01
Anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
Chrysene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Benzo(b)fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	- g / l	0.01	ISO 17025	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Benzo(ghi)perylene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Total EPA-16 PAHs	$\mu \mathrm{g} / \mathrm{l}$	0.2	ISO 17025	< 0.20	< 0.20	< 0.20	< 0.20	0.70	< 0.20

Arsenic (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	8.1	7.7	15	6.0	21	5.7
Boron (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	10	ISO 17025	88	150	580	140	1100	69
Cadmium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.08	ISO 17025	<0.08	<0.08	<0.08	<0.08	< 0.08	<0.08
Chromium (hexavalent)	$\mu \mathrm{g} / \mathrm{l}$	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chromium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.4	ISO 17025	<0.4	< 0.4	< 0.4	< 0.4	0.6	< 0.4
Copper (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.7	ISO 17025	< 0.7	< 0.7	1.5	0.8	1.2	1.0
Lead (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	3.4	3.6	5.2	5.2	6.9	3.9
Manganese (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.06	ISO 17025	20	22	2000	110	8400	69
Mercury (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.5	ISO 17025	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Nickel (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.3	ISO 17025	1.2	1.0	11	0.8	25	0.5
Selenium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	4	ISO 17025	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Zinc (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.4	ISO 17025	5.9	8.1	3.5	2.8	3.1	5.4

Calcium (dissolved)	mg / l	0.012	ISO 17025	120	120	270	92	410	100
Magnesium (dissolved)	mg / l	0.005	ISO 17025	8.1	11	43	29	79	10
Sodium (dissolved)	mg / l	0.01	ISO 17025	46	130	210	110	580	80

Environmental Science

Analytical Report Number: 14-51791
Project / Site name: New Monks Farm

Lab Sample Number				321793	321794	321795	321796	321797	321798
Sample Reference				BH02D	BH03D	BH09S	BH09D	BH08S	BH08D
Sample Number				None Supplied					
Depth (m)				1.31	1.94	0.665	1.56	0.605	1.37
Date Sampled				04/03/2014	04/03/2014	05/03/2014	05/03/2014	05/03/2014	05/03/2014
Time Taken				1440	1600	1045	1030	1140	1120
Analytical Parameter (Water Analysis)	$\stackrel{C}{\bar{E}}$								
Monoaromatics									
Benzene	Hg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	<1.0	<1.0	<1.0	<1.0	<1.0	< 1.0
Ethylbenzene	$\underline{\mu g / l}$	1	ISO 17025	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
p \& m-xylene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	<1.0	<1.0	<1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic > ${ }^{\text {C } 5-\mathrm{C} 6}$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic > $\mathrm{C} 6-\mathrm{C} 8$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	<10	< 10	<10	<10
TPH-CWG - Aliphatic > $\mathrm{C} 8-\mathrm{C} 10$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	<10	< 10
TPH-CWG - Aliphatic > $\mathrm{C} 10-\mathrm{C} 12$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	<10	< 10	<10	< 10
TPH-CWG - Aliphatic > $\mathrm{C} 12-\mathrm{C} 16$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	<10	< 10
TPH-CWG - Aliphatic > $\mathrm{C} 16-\mathrm{C} 21$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	<10	<10	<10	<10
TPH-CWG - Aliphatic >C21-C35	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	< 10	<10	<10
TPH-CWG - Aliphatic (C5 - C35)	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10

TPH-CWG - Aromatic >C5-C7	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	<10	< 10
TPH-CWG - Aromatic >C7-C8	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	< 10	< 10	< 10	<10
TPH-CWG - Aromatic > C8-C10	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	< 10	<10
TPH-CWG - Aromatic > $\mathrm{C} 10-\mathrm{C} 12$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	<10	<10
TPH-CWG - Aromatic > C12-C16	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	< 10	< 10	<10	< 10
TPH-CWG - Aromatic > C16-C21	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	<10	<10
TPH-CWG - Aromatic >C21-C35	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	< 10	<10
TPH-CWG - Aromatic (C5 - C35)	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	< 10	<10	<10	<10

Environmental Science

Analytical Report Number: 14-51791
Project / Site name: New Monks Farm

Lab Sample Number				321799	321800	321801	321802	321803	321804
Sample Reference				BH07S	BH07D	BH06S	BH06D	BH05D	BH11D
Sample Number				None Supplied					
Depth (m)				1.56	2.99	1.095	1.245	0.43	1.30
Date Sampled				05/03/2014	05/03/2014	05/03/2014	05/03/2014	05/03/2014	05/03/2014
Time Taken				1300	1700	1540	1525	1625	1430
Analytical Parameter (Water Analysis)	旁	行							

pH	pH Units	N/A	ISO 17025	7.3	7.4	7.7	7.7	7.8	7.7
Total Cyanide	$\mu \mathrm{g} / \mathrm{l}$	10	ISO 17025	< 10	< 10	< 10	< 10	< 10	< 10
Sulphate as SO	ug/l	45	ISO 17025	1280000	806000	283000	42700	71000	43600
Chloride	mg/l	0.15	ISO 17025	230	290	580	39	120	38
Ammonium as NH_{4}	$\mu \mathrm{g} / \mathrm{l}$	15	ISO 17025	11000	2600	310	< 15	< 15	< 15
Alkalinity	mg/l	3	ISO 17025	260	180	130	110	230	110

Total Phenols (monohydric)	$\mu \mathrm{g} / \mathrm{l}$	10	ISO 17025	< 10	< 10	< 10	< 10	< 10	< 10

Naphthalene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01
Fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01
Chrysene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01
Benzo(k)fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a, h) anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Total EPA-16 PAHs	$\mu \mathrm{g} / \mathrm{l}$	0.2	ISO 17025	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20

Arsenic (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	17	10	8.3	3.6	10	5.8
Boron (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	10	ISO 17025	720	610	320	65	630	68
Cadmium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.08	ISO 17025	< 0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Chromium (hexavalent)	$\mu \mathrm{g} / \mathrm{l}$	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chromium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.4	ISO 17025	0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Copper (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.7	ISO 17025	1.7	2.2	1.5	< 0.7	< 0.7	< 0.7
Lead (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	6.3	4.9	2.3	3.2	2.2	1.8
Manganese (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.06	ISO 17025	5200	1400	590	7.6	320	8.2
Mercury (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.5	ISO 17025	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Nickel (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.3	ISO 17025	21	15	2.5	<0.3	2.8	<0.3
Selenium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	4	ISO 17025	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Zinc (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.4	ISO 17025	13	83	2.6	4.0	6.7	3.2

Calcium (dissolved)	mg / l	0.012	ISO 17025	700	280	110	110	46	110
Magnesium (dissolved)	mg / l	0.005	ISO 17025	70	56	24	6.3	19	6.4
Sodium (dissolved)	mg / l	0.01	ISO 17025	200	250	390	25	190	25

Environmental Science

Analytical Report Number: 14-51791
Project / Site name: New Monks Farm

Lab Sample Number				321799	321800	321801	321802	321803	321804
Sample Reference				BH07S	BH07D	BH06S	BH06D	BH05D	BH11D
Sample Number				None Supplied					
Depth (m)				1.56	2.99	1.095	1.245	0.43	1.30
Date Sampled				05/03/2014	05/03/2014	05/03/2014	05/03/2014	05/03/2014	05/03/2014
Time Taken				1300	1700	1540	1525	1625	1430
Analytical Parameter (Water Analysis)	C								

Monoaromatics									
Benzene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	<1.0	<1.0	<1.0	<1.0	< 1.0	<1.0
Toluene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	<1.0	<1.0	<1.0	< 1.0	<1.0
p \& m-xylene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic > ${ }^{\text {C } 5-\mathrm{C} 6}$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic > $\mathrm{C} 6-\mathrm{C} 8$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	<10	< 10	<10	<10
TPH-CWG - Aliphatic > $\mathrm{C} 8-\mathrm{C} 10$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	<10	< 10
TPH-CWG - Aliphatic > $\mathrm{C} 10-\mathrm{C} 12$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	<10	< 10	<10	< 10
TPH-CWG - Aliphatic > $\mathrm{C} 12-\mathrm{C} 16$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	<10	< 10
TPH-CWG - Aliphatic > $\mathrm{C} 16-\mathrm{C} 21$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	<10	<10	<10	<10
TPH-CWG - Aliphatic >C21-C35	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	< 10	<10	<10
TPH-CWG - Aliphatic (C5 - C35)	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10

TPH-CWG - Aromatic >C5-C7	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	<10	< 10
TPH-CWG - Aromatic > C7-C8	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10	<10
TPH-CWG - Aromatic >C8-C10	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	<10	<10
TPH-CWG - Aromatic > C10-C12	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	<10	<10
TPH-CWG - Aromatic >C12-C16	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	<10	< 10	< 10	<10	< 10
TPH-CWG - Aromatic > C16-C21	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	<10	<10
TPH-CWG - Aromatic >C21-C35	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	<10	<10
TPH-CWG - Aromatic (C5 - C35)	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	<10	< 10	< 10	<10	< 10

Environmental Science

Analytical Report Number: 14-51791
Project / Site name: New Monks Farm

Lab Sample Number				321805	321806	321807	321808	321809	321810
Sample Reference				SW3	SW4	SW5	SW1	SW2	SW6
Sample Number				None Supplied					
Depth (m)				0.265	0.39	0.24	0.86	0.83	0.37
Date Sampled				05/03/2014	05/03/2014	05/03/2014	06/03/2014	06/03/2014	06/03/2014
Time Taken				1217	1155	1205	1030	1058	1234
Analytical Parameter (Water Analysis)	E								

pH	pH Units	N/A	ISO 17025	7.7	7.7	7.7	7.7	7.6	7.7
Total Cyanide	$\mu \mathrm{g} / \mathrm{l}$	10	ISO 17025	< 10	< 10	< 10	< 10	< 10	< 10
Sulphate as SO	ug/l	45	ISO 17025	88600	78700	154000	31300	37100	262000
Chloride	mg/l	0.15	ISO 17025	160	81	170	41	49	260
Ammonium as NH_{4}	$\mu \mathrm{g} / \mathrm{l}$	15	ISO 17025	< 15	< 15	33	< 15	700	< 15
Alkalinity	mg/l	3	ISO 17025	140	140	130	120	130	160

Total Phenols (monohydric)	$\mu \mathrm{g} / \mathrm{l}$	10	ISO 17025	<10	<10	<10	<10	<10	< 10

Naphthalene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01
Benzo(b)fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Total EPA-16 PAHs	$\mu \mathrm{g} / \mathrm{l}$	0.2	ISO 17025	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20

Arsenic (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	6.3	7.4	7.5	5.4	6.4	7.9
Boron (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	10	ISO 17025	110	94	150	35	52	230
Cadmium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.08	ISO 17025	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Chromium (hexavalent)	$\mu \mathrm{g} / \mathrm{l}$	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chromium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.4	ISO 17025	< 0.4	< 0.4	0.5	< 0.4	< 0.4	< 0.4
Copper (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.7	ISO 17025	1.3	< 0.7	3.2	0.9	1.6	1.8
Lead (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	2.0	2.4	3.0	2.6	2.3	3.3
Manganese (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.06	ISO 17025	5.4	7.7	43	2.6	4.2	11
Mercury (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.5	ISO 17025	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
Nickel (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.3	ISO 17025	0.4	<0.3	1.5	<0.3	<0.3	0.6
Selenium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	4	ISO 17025	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Zinc (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.4	ISO 17025	3.0	5.2	5.8	4.9	7.1	6.8

Calcium (dissolved)	mg / l	0.012	ISO 17025	120	130	140	110	110	180
Magnesium (dissolved)	mg / l	0.005	ISO 17025	16	11	17	4.5	5.5	31
Sodium (dissolved)	mg / l	0.01	ISO 17025	89	53	98	23	28	160

Environmental Science

Analytical Report Number: 14-51791
Project / Site name: New Monks Farm

Lab Sample Number				321805	321806	321807	321808	321809	321810
Sample Reference				SW3	SW4	SW5	SW1	SW2	SW6
Sample Number				None Supplied					
Depth (m)				0.265	0.39	0.24	0.86	0.83	0.37
Date Sampled				05/03/2014	05/03/2014	05/03/2014	06/03/2014	06/03/2014	06/03/2014
Time Taken				1217	1155	1205	1030	1058	1234
Analytical Parameter (Water Analysis)	$\stackrel{C}{\bar{E}}$								
Monoaromatics									
Benzene	[g/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
p \& m-xylene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic > ${ }^{\text {C } 5-\mathrm{C} 6}$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic > $\mathrm{C} 6-\mathrm{C} 8$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	<10	< 10	<10	<10
TPH-CWG - Aliphatic > $\mathrm{C} 8-\mathrm{C} 10$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	<10	< 10
TPH-CWG - Aliphatic > $\mathrm{C} 10-\mathrm{C} 12$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	<10	< 10	<10	< 10
TPH-CWG - Aliphatic > $\mathrm{C} 12-\mathrm{C} 16$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	<10	< 10
TPH-CWG - Aliphatic > $\mathrm{C} 16-\mathrm{C} 21$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	<10	<10	<10	<10
TPH-CWG - Aliphatic >C21-C35	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	< 10	<10	<10
TPH-CWG - Aliphatic (C5 - C35)	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10	< 10

TPH-CWG - Aromatic >C5-C7	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	<10	< 10
TPH-CWG - Aromatic >C7-C8	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	< 10	< 10	< 10	<10
TPH-CWG - Aromatic > C8-C10	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	< 10	<10
TPH-CWG - Aromatic > $\mathrm{C} 10-\mathrm{C} 12$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	<10	<10
TPH-CWG - Aromatic > C12-C16	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	< 10	< 10	<10	< 10
TPH-CWG - Aromatic > C16-C21	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	<10	<10
TPH-CWG - Aromatic >C21-C35	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	< 10	<10
TPH-CWG - Aromatic (C5 - C35)	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	< 10	<10	<10	<10

Environmental Science

Analytical Report Number: 14-51791
Project / Site name: New Monks Farm

Lab Sample Number				321811	321812	321813	321814	321815	
Sample Reference				SW7	SW8	SW9	SW10	SW11	
Sample Number				None Supplied					
Depth (m)				0.82	0.21	0.39	0.85	0.55	
Date Sampled				06/03/2014	06/03/2014	06/03/2014	06/03/2014	06/03/2014	
Time Taken				1250	1320	1355	1410	1451	
Analytical Parameter (Water Analysis)	¢	行							

pH	pH Units	N/A	ISO 17025	8.0	7.9	7.9	7.9	7.8	
Total Cyanide	$\mu \mathrm{g} / \mathrm{l}$	10	ISO 17025	< 10	< 10	< 10	< 10	< 10	
Sulphate as SO	ug/l	45	ISO 17025	48500	35200	24800	159000	27400	
Chloride	mg/l	0.15	ISO 17025	53	52	41	110	32	
Ammonium as NH_{4}	$\mu \mathrm{g} / \mathrm{l}$	15	ISO 17025	< 15	< 15	< 15	< 15	< 15	
Alkalinity	mg/l	3	ISO 17025	130	120	120	170	140	

Total Phenols (monohydric)	$\mu \mathrm{g} / \mathrm{l}$	10	ISO 17025	< 10	< 10	< 10	< 10	< 10

Naphthalene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Acenaphthylene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Acenaphthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	
Fluorene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	<0.01	<0.01	<0.01	< 0.01	< 0.01	
Phenanthrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	
Pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(a)anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	<0.01	<0.01	< 0.01	< 0.01	
Chrysene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	
Benzo(b)fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	
Benzo(k)fluoranthene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	
Benzo(a)pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Indeno(1,2,3-cd)pyrene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	
Dibenz(a, h) anthracene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	
Benzo(ghi)perylene	$\mu \mathrm{g} / \mathrm{l}$	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	

Total EPA-16 PAHs	$\mu \mathrm{g} / \mathrm{l}$	0.2	ISO 17025	<0.20	<0.20	<0.20	< 0.20	<0.20

Arsenic (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	5.3	6.1	6.1	7.0	5.2	
Boron (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	10	ISO 17025	54	44	28	160	27	
Cadmium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.08	ISO 17025	<0.08	<0.08	<0.08	<0.08	<0.08	
Chromium (hexavalent)	$\mu \mathrm{g} / \mathrm{l}$	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
Chromium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.4	ISO 17025	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	
Copper (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.7	ISO 17025	1.5	1.3	1.5	3.4	12	
Lead (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	1.8	3.3	2.5	2.4	2.4	
Manganese (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.06	ISO 17025	13	6.3	3.6	53	0.61	
Mercury (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.5	ISO 17025	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	
Nickel (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.3	ISO 17025	< 0.3	<0.3	< 0.3	1.5	< 0.3	
Selenium (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	4	ISO 17025	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	
Zinc (dissolved)	$\mu \mathrm{g} / \mathrm{l}$	0.4	ISO 17025	3.9	5.4	5.2	7.2	6.2	

Calcium (dissolved)	mg / l	0.012	ISO 17025	120	110	110	150	110	
Magnesium (dissolved)	mg / l	0.005	ISO 17025	6.2	5.4	4.0	14	3.3	
Sodium (dissolved)	mg / l	0.01	ISO 17025	31	28	22	81	18	

Environmental Science

Analytical Report Number: 14-51791
Project / Site name: New Monks Farm

Lab Sample Number				321811	321812	321813	321814	321815	
Sample Reference				SW7	SW8	SW9	SW10	SW11	
Sample Number				None Supplied					
Depth (m)				0.82	0.21	0.39	0.85	0.55	
Date Sampled				06/03/2014	06/03/2014	06/03/2014	06/03/2014	06/03/2014	
Time Taken				1250	1320	1355	1410	1451	
Analytical Parameter (Water Analysis)	E								

Monoaromatics									
Benzene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Toluene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Ethylbenzene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	<1.0	<1.0	<1.0	<1.0	< 1.0	
p \& m-xylene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	<1.0	< 1.0	<1.0	<1.0	<1.0	
o-xylene	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	<1.0	<1.0	< 1.0	<1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	$\mu \mathrm{g} / \mathrm{l}$	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5-C6	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	<10	
TPH-CWG - Aliphatic > $\mathrm{C} 6-\mathrm{C} 8$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	<10	< 10	<10	
TPH-CWG - Aliphatic > C8-C10	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	< 10	<10	<10	< 10	
TPH-CWG - Aliphatic > $\mathrm{C} 10-\mathrm{C} 12$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	<10	
TPH-CWG - Aliphatic > $\mathrm{C} 12-\mathrm{C} 16$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	< 10	
TPH-CWG - Aliphatic > $\mathrm{C} 16-\mathrm{C} 21$	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	<10	<10	< 10	
TPH-CWG - Aliphatic >C21-C35	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	<10	
TPH-CWG - Aliphatic (C5 - C35)	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10	

TPH-CWG - Aromatic >C5-C7	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	<10	
TPH-CWG - Aromatic > C7-C8	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >C8-C10	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	<10	
TPH-CWG - Aromatic > C10-C12	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	<10	
TPH-CWG - Aromatic >C12-C16	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	<10	< 10	< 10	<10	
TPH-CWG - Aromatic > C16-C21	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	<10	
TPH-CWG - Aromatic >C21-C35	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	<10	<10	<10	<10	<10	
TPH-CWG - Aromatic (C5 - C35)	$\mu \mathrm{g} / \mathrm{l}$	10	NONE	< 10	<10	< 10	<10	<10	

Environmental Science

Analytical Report Number : 14-51791
Project / Site name: New Monks Farm
Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Alkalinity in Water	Determination of Alkalinity by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW.	In house method based on MEWAM \& USEPA Method 310.2.	L082-PL	W	ISO 17025
Ammonium as NH 4 in water	Determination of Ammonium/Ammonia/Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg \& Eaton	L082-PL	W	ISO 17025
Boron in water	Determination of boron by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
BTEX and MTBE in water	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073W-PL	W	ISO 17025
Chloride in water	Determination of Chloride in water by Gallery Discrete Analyser based on reaction with mercury (II) thiocyanate and acid solution with iron (III) nitrate to form a red/brown iron (III) thiocyanate	Methods for the Examination of Water and Associated Materials Chloride in Waters, Sewage and Effluents 1981.ISBN 0117516260 Accredited matrices: SW, PW,	L082 B	W	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg \& Eaton (skalar)	L080-PL	W	ISO 17025
pH in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L070-UK	W	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg \& Eaton (Skalar)	L080-PL	W	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-UK	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.
For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.
Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of $\mathbf{3 0 0} \mathbf{~}$

In Situ Index Testing

Location	Date	Time	Temperature	PH*	Baro	ORP	Conductivity	RDO	
			${ }^{\circ} \mathrm{C}$		"Hg	mV	$\mu \mathrm{s} / \mathrm{cm}$	mg / l	\%
SW01	06/03/2014	10:30	10.85	6.11	30.33	304	526.4	8.71	77.4
SW02	06/03/2014	10:56	11.32	0.84	30.32	342	556.1	8.41	75.3
SW03	05/03/2014	12:15	12.32	7.02	30.2	123	897.8	13.21	122.3
	06/03/2014	12:14	12.57	2.06	30.32	331	886.5	12.94	119.1
SW04	05/03/2014	11:54	10.32	0	30.18	187	696.4		81
SW05	05/03/2014	12:03	8.93	-0.82	30.19	210	915	7.65	65.5
SW06	06/03/2014	12:34	9.95	4.31	30.31	314	1739	19.37	172.5
SW07	06/03/2014	13:04	10.98	2.33	30.3	332	678	13.33	118.7
SW08	06/03/2014	13:26	12.14	3.44	30.3	326	561.8	12.92	119
SW09	06/03/2014	13:55	12.19	9.86	30.3	276	521.4	11.22	102.6
SW10	06/03/2014	14:08	8.29	2.01	30.29	336	839.9	8.29	68.8

[^2]Capita Property and Infrastructure Ltd
Capita House
Wood Street
East Grinstead
West Sussex
RH19 1UU

[^0]: ${ }^{1}$ It was appreciated from the outset that seasonal impacts would take a time period more extensive than the 3 months length of the monitoring exercise but it was acknowledged that the period of highest rainfall (ie winter) would be covered which was the 'worst cakey b se' month in terms of groundwater flooding (should it occur).

[^1]: ${ }^{2}$ http://www.adur-worthing.gov.uk/media/media,87208,en.pdf accessed 17/03/14

[^2]: *Ph readings found to be unreliable

